A class of completely monotonic functions involving the polygamma functions

被引:0
|
作者
Li-Chun Liang
Li-Fei Zheng
Aying Wan
机构
[1] Northwest A&F University,College of Science
[2] Hulunbeir College,Department of Mathematics
关键词
Polygamma functions; Inequalities; Psi function; Complete monotonicity; 33B15; 26D07;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma (x)$\end{document} denote the classical Euler gamma function. We set ψn(x)=(−1)n−1ψ(n)(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi _{n}(x)=(-1)^{n-1}\psi ^{(n)}(x)$\end{document} (n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\in \mathbb{N}$\end{document}), where ψ(n)(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi ^{(n)}(x)$\end{document} denotes the nth derivative of the psi function ψ(x)=Γ′(x)/Γ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi (x)=\Gamma '(x)/\Gamma (x)$\end{document}. For λ, α, β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \in \mathbb{R}$\end{document} and m,n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m,n\in \mathbb{N}$\end{document}, we establish necessary and sufficient conditions for the functions L(x;λ,α,β)=ψm+n(x)−λψm(x+α)ψn(x+β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L(x;\lambda ,\alpha ,\beta )=\psi _{m+n}(x)-\lambda \psi _{m}(x+ \alpha ) \psi _{n}(x+\beta ) $$\end{document} and −L(x;λ,α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-L(x;\lambda ,\alpha ,\beta )$\end{document} to be completely monotonic on (−min(α,β,0),∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\min (\alpha ,\beta ,0),\infty )$\end{document}.
引用
收藏
相关论文
共 50 条