A new fictitious domain method in shape optimization

被引:0
|
作者
Karsten Eppler
Helmut Harbrecht
Mario S. Mommer
机构
[1] Technische Universität Dresden,Institut für Numerische Mathematik
[2] Universität Bonn,Institut für Numerische Mathematik
[3] University of Heidelberg,Interdisciplinary Center for Scientific Computing
关键词
Shape optimization; Shape calculus; Fictitious domain method; Multiscale method;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is concerned with investigating the capability of the smoothness preserving fictitious domain method from Mommer (IMA J. Numer. Anal. 26:503–524, 2006) to shape optimization problems. We consider the problem of maximizing the Dirichlet energy functional in the class of all simply connected domains with fixed volume, where the state equation involves an elliptic second order differential operator with non-constant coefficients. Numerical experiments in two dimensions validate that we arrive at a fast and robust algorithm for the solution of the considered class of problems. The proposed method can be applied to three dimensional shape optimization problems.
引用
收藏
页码:281 / 298
页数:17
相关论文
共 50 条
  • [1] A new fictitious domain method in shape optimization
    Eppler, Karsten
    Harbrecht, Helmut
    Mommer, Mario S.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 40 (02) : 281 - 298
  • [2] Fictitious domain approaches in shape optimization
    Haslinger, T
    COMPUTATIONAL METHODS FOR OPTIMAL DESIGN AND CONTROL, 1998, 24 : 237 - 248
  • [3] A moving mesh fictitious domain approach for shape optimization problems
    Mäkinen, RAE
    Rossi, T
    Toivanen, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (01): : 31 - 45
  • [4] Genetic algorithms and fictitious domain based approaches in shape optimization
    Haslinger, J
    Jedelsky, D
    STRUCTURAL OPTIMIZATION, 1996, 12 (04): : 257 - 264
  • [5] Fictitious domain approach used in shape optimization: Neumann boundary condition
    Dankova, J
    Haslinger, J
    CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 174 : 43 - 49
  • [6] Fictitious domain methods in shape optimization with applications in free-boundary problems
    Haslinger, J
    Kozubek, T
    Kunisch, K
    Peichl, G
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 56 - 75
  • [7] A fictitious energy approach for shape optimization
    Scherer, M.
    Denzer, R.
    Steinmann, P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (03) : 269 - 302
  • [8] A fictitious energy approach for shape optimization
    University of Erlangen-Nuremberg, Egerlandstraße 5, D-91058 Erlangen, Germany
    不详
    Int. J. Numer. Methods Eng., 3 (269-302):
  • [9] Fictitious domain method with Lagrange multipliers for solving optimal shape design problems
    Myslinski, A
    NUMERICAL METHODS IN ENGINEERING '96, 1996, : 231 - 237
  • [10] CONTROL FICTITIOUS DOMAIN METHOD FOR SOLVING OPTIMAL SHAPE DESIGN-PROBLEMS
    HASLINGER, J
    HOFFMANN, KH
    KOCVARA, M
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (02): : 157 - 182