Positive Lyapunov Exponents for Higher Dimensional Quasiperiodic Cocycles

被引:0
|
作者
Pedro Duarte
Silvius Klein
机构
[1] Universidade de Lisboa,Departamento de Matemática and CMAF, Faculdade de Ciências
[2] Universidade de Lisboa,CMAF, Faculdade de Ciências
[3] IMAR,undefined
来源
关键词
Lyapunov Exponent; Transversality Condition; Subharmonic Function; Large Lyapunov Exponent; Block Matrice;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an m-dimensional analytic cocycle T×Rm∋(x,ψ→)↦(x+ω,A(x)·ψ→)∈T×Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T} \times \mathbb{R}^m \ni (x, \vec{\psi}) \mapsto (x + \omega, A (x) \cdot \vec{\psi}) \in \mathbb{T} \times \mathbb{R}^m}$$\end{document}, where ω∉Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \notin \mathbb{Q}}$$\end{document} and A∈Cω(T,Matm(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \in C^\omega (\mathbb{T}, \mathrm{Mat}_m (\mathbb{R}))}$$\end{document}. Assuming that the d × d upper left corner block of A is typically large enough, we prove that the d largest Lyapunov exponents associated with this cocycle are bounded away from zero. The result is uniform relative to certain measurements on the matrix blocks forming the cocycle. As an application of this result, we obtain nonperturbative (in the spirit of Sorets–Spencer theorem) positive lower bounds of the nonnegative Lyapunov exponents for various models of band lattice Schrödinger operators.
引用
收藏
页码:189 / 219
页数:30
相关论文
共 50 条