We consider an m-dimensional analytic cocycle T×Rm∋(x,ψ→)↦(x+ω,A(x)·ψ→)∈T×Rm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{T} \times \mathbb{R}^m \ni (x, \vec{\psi}) \mapsto (x + \omega, A (x) \cdot \vec{\psi}) \in \mathbb{T} \times \mathbb{R}^m}$$\end{document}, where ω∉Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\omega \notin \mathbb{Q}}$$\end{document} and A∈Cω(T,Matm(R))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A \in C^\omega (\mathbb{T}, \mathrm{Mat}_m (\mathbb{R}))}$$\end{document}. Assuming that the d × d upper left corner block of A is typically large enough, we prove that the d largest Lyapunov exponents associated with this cocycle are bounded away from zero. The result is uniform relative to certain measurements on the matrix blocks forming the cocycle. As an application of this result, we obtain nonperturbative (in the spirit of Sorets–Spencer theorem) positive lower bounds of the nonnegative Lyapunov exponents for various models of band lattice Schrödinger operators.
机构:
Univ Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
Univ Lisbon, Fac Ciencias, CMAF, Lisbon, PortugalUniv Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
Duarte, Pedro
Klein, Silvius
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Fac Ciencias, CMAF, Lisbon, Portugal
IMAR, Bucharest, RomaniaUniv Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
机构:
Univ Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
Univ Lisbon, Fac Ciencias, CMAF, Lisbon, PortugalUniv Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
Duarte, Pedro
Klein, Silvius
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Fac Ciencias, CMAF, Lisbon, Portugal
IMAR, Bucharest, RomaniaUniv Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
机构:
Kungliga Tekniska Hogskolan, Dept Math, Lindstedtsvagen 25, SE-10044 Stockholm, SwedenKungliga Tekniska Hogskolan, Dept Math, Lindstedtsvagen 25, SE-10044 Stockholm, Sweden
机构:
CNRS, UMR 7586, Inst Math Jussieu, F-75013 Paris, France
IMPA, BR-22460320 Rio De Janeiro, BrazilCNRS, UMR 7586, Inst Math Jussieu, F-75013 Paris, France