Finding local Max-Cut in graphs in randomized polynomial time

被引:0
|
作者
Lunshan Gao
机构
[1] Wilfrid Laurier University,Department of Physics and Computer Science
来源
Soft Computing | 2024年 / 28卷
关键词
Maximum cut problem; Randomized polynomial time; Fuzzy logic; Triangular fuzzy number; Laplacian matrix; Signed Laplacian matrix;
D O I
暂无
中图分类号
学科分类号
摘要
A maximum cut (Max-Cut) problem in graph theory is NP-hard. This paper proposes a new randomized algorithm for finding local Max-Cut in graphs by using fuzzy logic. This paper proves that: (1) the computational complexity of computing local Max-Cut in graphs is in the class of randomized polynomial time (RP); (2) the real number solution of the new algorithm satisfies ϵ-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon -\delta $$\end{document} condition; (3) local Max-Cut solutions are maintained after defuzzification that converts real number vectors to integer vectors. Numerical experiments show that the new algorithm outperforms IBM CPLEX solvers. The new algorithm is nine times faster than the CPLEX Convex solver and more than thirty times faster than the CPLEX Global solver. The new algorithm could find local Max-Cut in signed graphs whereas CPLEX Convex solver failed to find Max-Cut in signed graphs when Laplacian matrix was not positive semidefinite.
引用
收藏
页码:3029 / 3048
页数:19
相关论文
共 50 条
  • [1] Finding local Max-Cut in graphs in randomized polynomial time
    Gao, Lunshan
    [J]. SOFT COMPUTING, 2024, 28 (04) : 3029 - 3048
  • [2] Local Max-Cut in Smoothed Polynomial Time
    Angel, Omer
    Bubeck, Sebastien
    Peres, Yuval
    Wei, Fan
    [J]. STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 429 - 437
  • [3] Graphs with a small max-cut
    Delorme, C
    Favaron, O
    [J]. UTILITAS MATHEMATICA, 1999, 56 : 153 - 165
  • [4] MAX-CUT IN CIRCULANT GRAPHS
    POLJAK, S
    TURZIK, D
    [J]. DISCRETE MATHEMATICS, 1992, 108 (1-3) : 379 - 392
  • [5] MAX-CUT has a randomized approximation scheme in dense graphs
    delaVega, WF
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1996, 8 (03) : 187 - 198
  • [6] On the max-cut of sparse random graphs
    Gamarnik, David
    Li, Quan
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (02) : 219 - 262
  • [7] Polynomial time approximation of dense weighted instances of MAX-CUT
    de la Vega, WF
    Karpinski, M
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (04) : 314 - 332
  • [8] MAX-CUT on Samplings of Dense Graphs
    Fakcharoenphol, Jittat
    Vajanopath, Phanu
    [J]. 2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,
  • [9] MAX-CUT and Containment Relations in Graphs
    Kaminski, Marcin
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 15 - 26
  • [10] MAX-CUT and containment relations in graphs
    Kaminski, Marcin
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 438 : 89 - 95