Generalized Kripke semantics for Nelson’s logic

被引:0
|
作者
E. I. Latkin
机构
来源
Algebra and Logic | 2010年 / 49卷
关键词
Nelson logic; Kripke semantics; algebraic semantics; generalized frame;
D O I
暂无
中图分类号
学科分类号
摘要
A completeness theorem for logics N4N and N30 is proved. A characterization by classes of N4N- and N30-models is presented, and it is proved that all logics of four types η(L), η3(L), ηn(L), and η0(L) are Kripke complete iff so are their respective intuitionistic fragments L. A generalized Kripke semantics is introduced, and it is stated that such is equivalent to an algebraic semantics. The concept of a p-morphism between generalized frames is defined and basic statements on p-morphisms are proved.
引用
下载
收藏
页码:426 / 443
页数:17
相关论文
共 50 条
  • [1] GENERALIZED KRIPKE SEMANTICS FOR NELSON'S LOGIC
    Latkin, E. I.
    ALGEBRA AND LOGIC, 2010, 49 (05) : 426 - 443
  • [2] Algebraic Semantics for Nelson's Logic S
    Nascimento, Thiago
    Rivieccio, Umberto
    Marcos, Joao
    Spinks, Matthew
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2018), 2018, 10944 : 271 - 288
  • [3] Algebraic semantics for paraconsistent Nelson's logic
    Odintsov, SP
    JOURNAL OF LOGIC AND COMPUTATION, 2003, 13 (04) : 453 - 468
  • [4] Kripke Semantics for Intuitionistic Łukasiewicz Logic
    A. Lewis-Smith
    P. Oliva
    E. Robinson
    Studia Logica, 2021, 109 : 313 - 339
  • [5] A kripke semantics for the logic of gelfand quantales
    Allwein G.
    Maccaull W.
    Studia Logica, 2001, 68 (2) : 173 - 228
  • [6] Kripke semantics for provability logic GLP
    Beklemishev, Lev D.
    ANNALS OF PURE AND APPLIED LOGIC, 2010, 161 (06) : 756 - 774
  • [7] Kripke semantics for the logic of problems and propositions
    Onoprienko, A. A.
    SBORNIK MATHEMATICS, 2020, 211 (05) : 709 - 732
  • [8] A note on Kripke semantics for residuated logic
    MacCaull, W
    FUZZY SETS AND SYSTEMS, 1996, 77 (02) : 229 - 234
  • [9] Kripke semantics for modal bilattice logic
    Jung, Achim
    Rivieccio, Umberto
    2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, : 438 - 447
  • [10] Kripke Semantics for Intuitionistic Lukasiewicz Logic
    Lewis-Smith, A.
    Oliva, P.
    Robinson, E.
    STUDIA LOGICA, 2021, 109 (02) : 313 - 339