Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation

被引:0
|
作者
Yaqun Peng
Xinli Zhang
Daxiong Piao
机构
[1] Sun Yat-Sen University,School of Mathematics (Zhuhai)
[2] Qingdao University of Science and Technology,School of Mathematics and Physics
[3] Ocean University of China,School of Mathematical Sciences
关键词
Hamiltonian system; Sublinear Duffing equation; Boundedness; Quasi-periodic solution; Invariant curve; 34C11; 34D20; 37E40; 37J40;
D O I
暂无
中图分类号
学科分类号
摘要
The authors study the Lagrangian stability for the sublinear Duffing equations ẍ + e(t)∣x∣α−1x = p(t) with 0 < α < 1, where e and p are real analytic quasi-periodic functions with frequency ω. It is proved that if the mean value of e is positive and the frequency ω satisfies Diophantine condition, then every solution of the equation is bounded.
引用
收藏
页码:85 / 104
页数:19
相关论文
共 50 条
  • [1] Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation
    Peng, Yaqun
    Zhang, Xinli
    Piao, Daxiong
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (01) : 85 - 104
  • [2] Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation
    YaqunPENG
    XinliZHANG
    DaxiongPIAO
    [J]. Chinese Annals of Mathematics,Series B, 2021, 42 (01) : 85 - 104
  • [3] Periodic and quasi-periodic trajectories of the duffing equation
    Nikitina, NV
    Senchenkov, IK
    [J]. INTERNATIONAL APPLIED MECHANICS, 1997, 33 (08) : 672 - 678
  • [4] Periodic and quasi-periodic trajectories of the Duffing equation
    N. V. Nikitina
    I. K. Senchenkov
    [J]. International Applied Mechanics, 1997, 33 : 672 - 678
  • [5] BOUNDEDNESS OF SOLUTIONS FOR QUASI-PERIODIC POTENTIALS
    LEVI, M
    ZEHNDER, E
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) : 1233 - 1256
  • [6] The coexistence of quasi-periodic and blow-up solutions in a superlinear Duffing equation
    Sun, Yanmei
    Li, Xiong
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1589 - 1602
  • [7] The coexistence of quasi-periodic and blow-up solutions in a superlinear Duffing equation
    Yanmei Sun
    Xiong Li
    [J]. Science China Mathematics, 2018, 61 : 1589 - 1602
  • [8] The coexistence of quasi-periodic and blow-up solutions in a superlinear Duffing equation
    Yanmei Sun
    Xiong Li
    [J]. Science China Mathematics, 2018, 61 (09) : 51 - 64
  • [9] QUASI-PERIODIC SOLUTIONS OF GENERALIZED BOUSSINESQ EQUATION WITH QUASI-PERIODIC FORCING
    Shi, Yanling
    Xu, Junxiang
    Xu, Xindong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (06): : 2501 - 2519
  • [10] THE CONSTRUCTION OF QUASI-PERIODIC SOLUTIONS OF QUASI-PERIODIC FORCED SCHRODINGER EQUATION
    Jiao, Lei
    Wang, Yiqian
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1585 - 1606