How quadratic are the natural numbers?

被引:0
|
作者
Friedrich Roesler
机构
[1] Technische Universität München,
[2] Zentrum Mathematik,undefined
[3] D-80333 München,undefined
来源
Archiv der Mathematik | 1999年 / 73卷
关键词
Natural Number; General Estimate; Prime Factorization; Optimal Factorization; Quadraticity Measure;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract. For natural numbers n we inspect all factorizations n = ab of n with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $a \le b$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Bbb N$\end{document} and denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n=a_n b_n$\end{document} the most quadratic one, i.e. such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $b_n - a_n$\end{document} is minimal. Then the quotient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa (n) := a_n/b_n$\end{document} is a measure for the quadraticity of n. The best general estimate for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa (n)$\end{document} is of course very poor: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $1/n \le \kappa (n)\le 1$\end{document}. But a Theorem of Hall and Tenenbaum [1, p. 29], implies$(\log n)^{-\delta -\varepsilon } \le \kappa (n) \le (\log n)^{-\delta }$ on average, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\delta = 1 - (1+\log _2 \,2)/\log 2=0,08607 \ldots $\end{document} and for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\varepsilon >0$\end{document}. Hence the natural numbers are fairly quadratic.¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa (n)$\end{document} characterizes a specific optimal factorization of n. A quadraticity measure, which is more global with respect to the prime factorization of n, is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa ^*(n):= \textstyle\sum\limits \limits _{1\le a \le b, ab=n} a/b$\end{document}. We show $\kappa ^*(n) \sim \frac {1}{2}$ on average, and $\kappa ^*(n)=\Omega (2^{\frac {1}{2}(1-\varepsilon ) {\log}\, n/{\log} _2n})$for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\varepsilon>0$\end{document}.
引用
收藏
页码:193 / 198
页数:5
相关论文
共 50 条