Robust Principal Component Pursuit via Inexact Alternating Minimization on Matrix Manifolds

被引:0
|
作者
Michael Hintermüller
Tao Wu
机构
[1] Humboldt-Universität zu Berlin,Department of Mathematics
[2] Karl-Franzens-University of Graz,Institute for Mathematics and Scientific Computing
关键词
Matrix decomposition; Low-rank matrix; Sparse matrix; Image processing; Alternating minimization; Riemannian manifold; Optimization on manifolds; 15A83; 53B21; 65K10; 90C30; 94A08;
D O I
暂无
中图分类号
学科分类号
摘要
Robust principal component pursuit (RPCP) refers to a decomposition of a data matrix into a low-rank component and a sparse component. In this work, instead of invoking a convex-relaxation model based on the nuclear norm and the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^1$$\end{document}-norm as is typically done in this context, RPCP is solved by considering a least-squares problem subject to rank and cardinality constraints. An inexact alternating minimization scheme, with guaranteed global convergence, is employed to solve the resulting constrained minimization problem. In particular, the low-rank matrix subproblem is resolved inexactly by a tailored Riemannian optimization technique, which favorably avoids singular value decompositions in full dimension. For the overall method, a corresponding q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-linear convergence theory is established. The numerical experiments show that the newly proposed method compares competitively with a popular convex-relaxation based approach.
引用
收藏
页码:361 / 377
页数:16
相关论文
共 50 条
  • [1] Robust Principal Component Pursuit via Inexact Alternating Minimization on Matrix Manifolds
    Hintermueller, Michael
    Wu, Tao
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (03) : 361 - 377
  • [2] FAST PRINCIPAL COMPONENT PURSUIT VIA ALTERNATING MINIMIZATION
    Rodriguez, Paul
    Wohlberg, Brendt
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 69 - 73
  • [3] An alternating minimization method for robust principal component analysis
    Shen, Yuan
    Xu, Hongyu
    Liu, Xin
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (06): : 1251 - 1276
  • [4] Robust visual tracking via principal component pursuit
    Yuan, Guang-Lin
    Xue, Mo-Gen
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2015, 43 (03): : 417 - 423
  • [5] Robust Homography Estimation via Dual Principal Component Pursuit
    Ding, Tianjiao
    Yang, Yunchen
    Zhu, Zhihui
    Robinson, Daniel P.
    Vidal, Rene
    Kneip, Laurent
    Tsakiris, Manolis C.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6079 - 6088
  • [6] Robust Process monitoring via Stable Principal Component Pursuit
    Chen, Chun-Yu
    Yao, Yuan
    IFAC PAPERSONLINE, 2015, 48 (08): : 617 - 622
  • [7] Reinforced Robust Principal Component Pursuit
    Brahma, Pratik Prabhanjan
    She, Yiyuan
    Li, Shijie
    Li, Jiade
    Wu, Dapeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1525 - 1538
  • [8] Robust Principal Component Analysis via Truncated Nuclear Norm Minimization
    张艳
    郭继昌
    赵洁
    王博
    Journal of Shanghai Jiaotong University(Science), 2016, 21 (05) : 576 - 583
  • [9] Robust principal component analysis via truncated nuclear norm minimization
    Zhang Y.
    Guo J.
    Zhao J.
    Wang B.
    Journal of Shanghai Jiaotong University (Science), 2016, 21 (5) : 576 - 583
  • [10] ROBUST INEXACT ALTERNATING OPTIMIZATION FOR MATRIX COMPLETION WITH OUTLIERS
    Li, Ji
    Cai, Jian-Feng
    Zhao, Hongkai
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (02) : 337 - 354