Factor effects and interactions in steam reforming of biomass bio-oil

被引:0
|
作者
Joshua O. Ighalo
Adewale George Adeniyi
机构
[1] University of Ilorin,Chemical Engineering Department, Faculty of Engineering and Technology
来源
Chemical Papers | 2020年 / 74卷
关键词
Interactions; Bio-oil; Steam reforming; Hydrogen; Biomass; Thermodynamics;
D O I
暂无
中图分类号
学科分类号
摘要
One of the current methods of converting pyrolysis oil and its aqueous phase into more useful biofuels with higher heating value is by the steam reforming technique. In this study, a thermodynamic model for the steam reforming of the aqueous phase of biomass bio-oil was developed. The optimal values of the process parameters for the steam reforming of the aqueous phase of biomass bio-oil are reforming temperature of 773 °C, reforming pressure of 1 atm and steam-to-oil ratio of 20 kg/kg. The synthesis gas obtained at optimal conditions has a hydrogen gas content of 76%, carbon dioxide content of 22%, carbon monoxide content of 2% and only trace quantities of methane. For a theoretical feed of 100 kg/h bio-oil, a water flow rate of 2000 kg/h will be required. Simulation showed that overall gas yield under such feed rate at optimal conditions will generate 131.3 kg/h synthesis gas (with 76% H2 content) and 1968.7 kg/h of condensate water. The interaction of the factors with regard to all chemical species was also extensively investigated.
引用
收藏
页码:1459 / 1470
页数:11
相关论文
共 50 条
  • [1] Factor effects and interactions in steam reforming of biomass bio-oil
    Ighalo, Joshua O.
    Adeniyi, Adewale George
    CHEMICAL PAPERS, 2020, 74 (05): : 1459 - 1470
  • [2] Catalytic steam reforming of bio-oil
    Trane, R.
    Dahl, S.
    Skjoth-Rasmussen, M. S.
    Jensen, A. D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (08) : 6447 - 6472
  • [3] Catalysts for Steam Reforming of Bio-oil: A Review
    Chen, Jixiang
    Sun, Junming
    Wang, Yong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (16) : 4627 - 4637
  • [4] Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO2 emission
    Hu, Xun
    Lu, Gongxuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (13) : 7169 - 7176
  • [5] Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil
    Chen, Guanyi
    Yao, Jingang
    Liu, Jing
    Yan, Beibei
    Shan, Rui
    RENEWABLE ENERGY, 2016, 91 : 315 - 322
  • [6] Steam reforming of ethanol: A model compound of bio-oil
    Trane, Rasmus
    Jensen, Anker D.
    Dahl, Soren
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [7] Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review
    Setiabudi, H. D.
    Aziz, M. A. A.
    Abdullah, Sureena
    Teh, L. P.
    Jusoh, R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (36) : 18376 - 18397
  • [8] Steam Reforming of Bio-oil Fractions: Effect of Composition and Stability
    Ortiz-Toral, Pedro J.
    Satrio, Justinus
    Brown, Robert C.
    Shanks, Brent H.
    ENERGY & FUELS, 2011, 25 (07) : 3289 - 3297
  • [9] Progress in hydrogen production by steam catalytic reforming of bio-oil
    Wang Z.
    Sun L.
    Chen L.
    Yang S.
    Xie X.
    Zhao B.
    Si H.
    Hua D.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (01): : 151 - 163
  • [10] Thermodynamic comparison between bio-oil and ethanol steam reforming
    Montero, Carolina
    Oar-Arteta, Lide
    Remiro, Aingeru
    Arandia, Aitor
    Bilbao, Javier
    Gayubo, Ana G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) : 15963 - 15971