Threshold Conditions for a Non-Autonomous Epidemic System Describing the Population Dynamics of Dengue

被引:0
|
作者
F. A. B. Coutinhoa
M. N. Burattinia
L. F. Lopeza
E. Massada
机构
[1] The University of São Paulo and LIM 01/HCFMUSP,School of Medicine
[2] London University,London School of Hygiene and Tropical Medicine
来源
关键词
Dengue; Vector-borne; Overwinter; Vertical transmission; Modeling; Non-autonomous systems;
D O I
暂无
中图分类号
学科分类号
摘要
A non-autonomous dynamical system, in which the seasonal variation of a mosquito vector population is modeled, is proposed to investigate dengue overwintering. A time-dependent threshold, R(t), is deduced such that when its yearly average, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{R}$$\end{document}, is less than 1, the disease does not invade the populations and when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{R}$$\end{document} is greater than 1 it does. By not invading the population we mean that the number of infected individuals always decrease in subsequent seasons of transmission. Using the same threshold, all the qualitative features of the resulting epidemic can be understood. Our model suggests that trans-ovarial infection in the mosquitoes facilitates dengue overwintering. We also explain the delay between the peak in the mosquitoes population and the peak in dengue cases.
引用
收藏
页码:2263 / 2282
页数:19
相关论文
共 50 条
  • [1] Threshold Conditions for a Non-Autonomous Epidemic System Describing the Population Dynamics of Dengue
    F. A. B. Coutinho
    M. N. Burattini
    L. F. Lopez
    E. Massad
    Bulletin of Mathematical Biology, 2007, 69 (6) : 2117 - 2117
  • [2] Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue
    Coutinho, F. A. B.
    Burattini, M. N.
    Lopez, L. F.
    Massad, E.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (08) : 2263 - 2282
  • [3] Threshold conditions for a non-autonomous epidemic model with vaccination
    Zhang, Tailei
    Teng, Zhidong
    Gao, Shujing
    APPLICABLE ANALYSIS, 2008, 87 (02) : 181 - 199
  • [4] The threshold of a non-autonomous SIRS epidemic model with stochastic perturbations
    Ji, Chunyan
    Jiang, Daqing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1773 - 1782
  • [5] DYNAMICS OF A NON-AUTONOMOUS THREE-DIMENSIONAL POPULATION SYSTEM
    Ta Hong Quang
    Ta Viet Ton
    Nguyen Thi Hoai Linh
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [6] Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation
    Safi, Mohammad A.
    Imran, Mudassar
    Gumel, Abba B.
    THEORY IN BIOSCIENCES, 2012, 131 (01) : 19 - 30
  • [7] Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation
    Mohammad A. Safi
    Mudassar Imran
    Abba B. Gumel
    Theory in Biosciences, 2012, 131 : 19 - 30
  • [8] A simple non-autonomous system with complicated dynamics
    Balibrea, F.
    Chacon, R.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (02) : 131 - 136
  • [9] Chaos in a non-autonomous nonlinear system describing asymmetric water wheels
    Bhatt, Ashish
    Van Gorder, Robert A.
    NONLINEAR DYNAMICS, 2018, 93 (04) : 1977 - 1988
  • [10] Chaos in a non-autonomous nonlinear system describing asymmetric water wheels
    Ashish Bhatt
    Robert A. Van Gorder
    Nonlinear Dynamics, 2018, 93 : 1977 - 1988