Optimal online time-series segmentation

被引:0
|
作者
Ángel Carmona-Poyato
Nicolás-Luis Fernández-García
Francisco-José Madrid-Cuevas
Rafael Muñoz-Salinas
Francisco-José Romero-Ramírez
机构
[1] University of Cordoba,Department of Computing and Numerical Analysis, Maimonides Institute for Biomedical Research (IMIBIC)
来源
关键词
Optimal time series segmentation; Segmentation online versus offline; Error bound guarantee; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
When time series are processed, the difficulty increases with the size of the series. This fact is aggravated when time series are processed online, since their size increases indefinitely. Therefore, reducing their number of points, without significant loss of information, is an important field of research. This article proposes an optimal online segmentation method, called OSFS-OnL, which guarantees that the number of segments is minimal, that a preset error limit is not exceeded using the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \infty $$\end{document}-norm, and that for that number of segments the value of the error corresponding to the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm is minimized. This new proposal has been compared with the optimal OSFS offline segmentation method and has shown better computational performance, regardless of its flexibility to apply it to online or offline segmentation.
引用
收藏
页码:2417 / 2438
页数:21
相关论文
共 50 条
  • [1] Optimal online time-series segmentation
    Carmona-Poyato, Angel
    Fernandez-Garcia, Nicolas-Luis
    Madrid-Cuevas, Francisco-Jose
    Munoz-Salinas, Rafael
    Romero-Ramirez, Francisco-Jose
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (04) : 2417 - 2438
  • [2] Optimal Experiment Design Techniques Integrated with Time-series Segmentation
    Dobos, L.
    Banko, Z.
    Abonyi, J.
    [J]. 2010 IEEE 8TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS, 2010, : 207 - 210
  • [3] Probabilistic time-series segmentation
    Kalantarian, Haik
    Sarrafzadeh, Majid
    [J]. PERVASIVE AND MOBILE COMPUTING, 2017, 41 : 397 - 412
  • [4] SEGMENTATION OF NONSTATIONARY TIME-SERIES
    ISHII, N
    IWATA, A
    SUZUMURA, N
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1979, 10 (08) : 883 - 894
  • [5] Online recognition and segmentation for time-series motion with HMM and conceptual relation of actions
    Moro, T
    Nejigane, Y
    Shimosaka, M
    Segawa, YI
    Harada, T
    Sato, T
    [J]. 2005 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2005, : 2568 - 2574
  • [6] TIME-SERIES SEGMENTATION - A MODEL AND A METHOD
    SCLOVE, SL
    [J]. INFORMATION SCIENCES, 1983, 29 (01) : 7 - 25
  • [7] Hinging Hyperplanes for Time-Series Segmentation
    Huang, Xiaolin
    Matijas, Marin
    Suykens, Johan A. K.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (08) : 1279 - 1291
  • [8] A new approach for optimal offline time-series segmentation with error bound guarantee
    Carmona-Poyato, Angel
    Luis Fernandez-Garcia, Nicolas
    Jose Madrid-Cuevas, Francisco
    Manuel Duran-Rosal, Antonio
    [J]. PATTERN RECOGNITION, 2021, 115
  • [9] TIME-SERIES ONLINE - EXPLORING ECONBASE AND PTS UNITED-STATES TIME-SERIES
    ALLEN, C
    [J]. DATABASE, 1991, 14 (06): : 27 - 34
  • [10] OPTIMAL TIME-SERIES SELECTION OF QUASARS
    Butler, Nathaniel R.
    Bloom, Joshua S.
    [J]. ASTRONOMICAL JOURNAL, 2011, 141 (03):