The theme of doing quantum mechanics on all Abelian groups goes back to Schwinger and Weyl. If the group is a vector space of finite dimension over a non-Archimedean locally compact division ring, it is of interest to examine the structure of dynamical systems defined by Hamiltonians analogous to those encountered over the field of real numbers. In this Letter, a path integral formula for the imaginary time propagators of these Hamiltonians is derived.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
Seoul Natl Univ, Res Inst Math, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Kim, Dohyeong
Kim, Minhyong
论文数: 0引用数: 0
h-index: 0
机构:
Int Ctr Math Sci, 47 Potterrow, Edinburgh EH8 9BT, Scotland
Korea Inst Adv Study, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Kim, Minhyong
Park, Jeehoon
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Ctr Quantum Struct Modules & Spaces, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Park, Jeehoon
Yoo, Hwajong
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Res Inst Math, Seoul, South Korea
Seoul Natl Univ, Coll Liberal Studies, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany