Path Integrals for a Class of P-Adic Schrödinger Equations

被引:0
|
作者
V. S. Varadarajan
机构
来源
关键词
path integrals; imaginary time.;
D O I
暂无
中图分类号
学科分类号
摘要
The theme of doing quantum mechanics on all Abelian groups goes back to Schwinger and Weyl. If the group is a vector space of finite dimension over a non-Archimedean locally compact division ring, it is of interest to examine the structure of dynamical systems defined by Hamiltonians analogous to those encountered over the field of real numbers. In this Letter, a path integral formula for the imaginary time propagators of these Hamiltonians is derived.
引用
收藏
页码:97 / 106
页数:9
相关论文
共 50 条
  • [1] Path integrals for a class of p-adic Schrodinger equations
    Varadarajan, VS
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (02) : 97 - 106
  • [2] P-ADIC PATH-INTEGRALS
    ZELENOV, EI
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (01) : 147 - 152
  • [3] p-Adic Path Integrals for Quadratic Actions
    Djordjevic, G. S.
    Dragovich, B.
    Modern Physics Letter A, 12 (20):
  • [4] p-adic path integrals for quadratic actions
    Djordjevic, GS
    Dragovich, B
    MODERN PHYSICS LETTERS A, 1997, 12 (20) : 1455 - 1463
  • [5] Path integrals and p-adic L-functions
    Carlson, Magnus
    Chung, Hee-Joong
    Kim, Dohyeong
    Kim, Minhyong
    Park, Jeehoon
    Yoo, Hwajong
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (06) : 1951 - 1966
  • [6] Path integrals for quadratic lagrangians on p-adic and adelic spaces
    Branko Dragovich
    Zoran Rakić
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2010, 2 (4) : 322 - 340
  • [7] Continuous Time p-Adic Random Walks and Their Path Integrals
    Erik Bakken
    David Weisbart
    Journal of Theoretical Probability, 2019, 32 : 781 - 805
  • [8] Feynman path integrals over p-adic vector space
    Smolyanov, O. G.
    Shamarov, N. N.
    MATHEMATICAL MODELING OF WAVE PHENOMENA, 2009, 1106 : 286 - 297
  • [9] Continuous Time p-Adic Random Walks and Their Path Integrals
    Bakken, Erik
    Weisbart, David
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (02) : 781 - 805
  • [10] Path Integrals for Quadratic Lagrangians on p-Adic and Adelic Spaces
    Dragovich, Branko
    Rakic, Zoran
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2010, 2 (04) : 322 - 340