On homological mirror symmetry for chain type polynomials

被引:0
|
作者
Umut Varolgunes
Alexander Polishchuk
机构
[1] Stanford University,
[2] University of Oregon,undefined
[3] National Research University Higher School of Economics,undefined
[4] Korea Institute for Advanced Study,undefined
来源
Mathematische Annalen | 2024年 / 388卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider Takahashi’s categorical interpretation of the Berglund–Hubsch mirror symmetry conjecture for invertible polynomials in the case of chain polynomials. Our strategy is based on a stronger claim that the relevant categories satisfy a recursion of directed A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-categories, which may be of independent interest. We give a full proof of this claim on the B-side. On the A-side we give a detailed sketch of an argument, which falls short of a full proof because of certain missing foundational results in Fukaya–Seidel categories, most notably a generation statement.
引用
收藏
页码:2331 / 2386
页数:55
相关论文
共 50 条
  • [1] On homological mirror symmetry for chain type polynomials
    Varolgunes, Umut
    Polishchuk, Alexander
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2331 - 2386
  • [2] Homological mirror symmetry for invertible polynomials in two variables
    Habermann, Matthew
    QUANTUM TOPOLOGY, 2022, 13 (02) : 207 - 253
  • [3] Homological Mirror Symmetry for manifolds of general type
    Kapustin, Anton
    Katzarkov, Ludmil
    Orlov, Dmitri
    Yotov, Mirroslav
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (04): : 571 - 605
  • [4] Homological mirror symmetry for singularities of type D
    Futaki, Masahiro
    Ueda, Kazushi
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (3-4) : 633 - 652
  • [5] Homological mirror symmetry for singularities of type D
    Masahiro Futaki
    Kazushi Ueda
    Mathematische Zeitschrift, 2013, 273 : 633 - 652
  • [6] Homological mirror symmetry for singularities
    Ebeling, Wolfgang
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 75 - 107
  • [7] Meet Homological Mirror Symmetry
    Ballard, Matthew Robert
    MODULAR FORMS AND STRING DUALITY, 2008, 54 : 191 - 224
  • [8] Planar homological mirror symmetry
    Konishi, Eiji
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (29): : 5351 - 5368
  • [9] Homological perturbation theory and mirror symmetry
    Zhou, J
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2003, 19 (04) : 695 - 714
  • [10] Generalized Homological Mirror Symmetry and cubics
    Katzarkov, L.
    Przyjalkowski, V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 264 (01) : 87 - 95