Grating tuned Ti:Sa laser for in-source spectroscopy of Rydberg and autoionizing states

被引:0
|
作者
A. Teigelhöfer
P. Bricault
O. Chachkova
M. Gillner
J. Lassen
J. P. Lavoie
R. Li
J. Meißner
W. Neu
K. D. A. Wendt
机构
[1] TRIUMF,
[2] Fachhochschule Emden/Leer,undefined
[3] Johannes Gutenberg-Universität,undefined
来源
Hyperfine Interactions | 2010年 / 196卷
关键词
Resonant laser ionization; Titanium:Sapphire laser; Diffraction grating; Gallium; Rydberg states;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the large absorption cross section for optical transitions into Rydberg and autoionizing states compared to non-resonant ionization, these states are of particular interest for use in efficient laser resonance ionization excitation schemes as used in Resonant Ionization Laser Ion Sources (RILIS). In order to identify these atomic states extensive laser spectroscopy has to be performed. The lasers employed at TRIUMF’s laser ion source are birefringent filter tuned titanium:sapphire (Ti:Sa) lasers which are designed for long term frequency stability rather than continuous tuning. The design and characteristics of a grating tuned, high repetition rate, pulsed Ti:Sa laser for spectroscopy applications are presented. This laser allows fast scans of up to 40 THz with a laser linewidth of approximately 6 GHz. First tests were performed by scanning across the Rydberg series of gallium.
引用
收藏
页码:161 / 168
页数:7
相关论文
共 50 条
  • [1] Grating tuned Ti:Sa laser for in-source spectroscopy of Rydberg and autoionizing states
    Teigelhoefer, A.
    Bricault, P.
    Chachkova, O.
    Gillner, M.
    Lassen, J.
    Lavoie, J. P.
    Li, R.
    Meissner, J.
    Neu, W.
    Wendt, K. D. A.
    HYPERFINE INTERACTIONS, 2010, 196 (1-3): : 161 - 168
  • [2] Grating tuned Ti:Sa laser for in-source spectroscopy of Rydberg and autoionizing states
    Teigelhofer, A.
    Bricault, P.
    Chachkova, O.
    Gillner, M.
    Lassen, J.
    Lavoie, J. P.
    Li, R.
    Meissner, J.
    Neu, W.
    Wendt, K. D. A.
    LASER 2009: RECENT ACHIEVEMENTS AND FUTURE PROSPECTS, 2010, : 161 - 168
  • [3] Rydberg and autoionizing states of tellurium studied by laser resonance ionization spectroscopy
    Li, R.
    Liu, Y.
    Mostamand, M.
    Kieck, T.
    Wendt, K. D. A.
    Lassen, J.
    PHYSICAL REVIEW A, 2019, 100 (05)
  • [4] Photoelectron spectroscopy of autoionizing Rydberg states of ammonia
    Bacon, JA
    Pratt, ST
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (09): : 4153 - 4161
  • [5] Photoelectron spectroscopy of autoionizing Rydberg states of water.
    Glab, WL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U230 - U231
  • [6] RYDBERG SERIES OF AUTOIONIZING STATES IN STRONG LASER FIELDS
    LYRAS, A
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1990, 15 (01): : 3 - 12
  • [7] MULTIPHOTON IONIZATION SPECTROSCOPY OF THALLIUM AUTOIONIZING AND MOLECULAR RYDBERG STATES
    NAQVI, AS
    HAMDAN, AM
    CANADIAN JOURNAL OF APPLIED SPECTROSCOPY, 1992, 37 (01): : 29 - 35
  • [8] Even-parity Rydberg and autoionizing states of lutetium by laser resonance-ionization spectroscopy
    Li, R.
    Lassen, J.
    Zhong, Z. P.
    Jia, F. D.
    Mostamand, M.
    Li, X. K.
    Reich, B. B.
    Teigelhoefer, A.
    Yan, H.
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [9] Odd-parity Rydberg and autoionizing states of thulium studied by laser resonance ionization spectroscopy
    Mostamand, M.
    Li, R.
    Romans, J.
    Lassen, J.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2022, 190
  • [10] Laser-induced effects for overlapping autoionizing Rydberg states of xenon
    Grum-Grzhimailo, AN
    Gryzlova, EV
    Magunov, AI
    Strakhova, SI
    OPTICS AND SPECTROSCOPY, 2006, 100 (04) : 517 - 524