On the distribution of square-full integers

被引:0
|
作者
Dan Wang
机构
[1] Qilu University of Technology (Shandong Academy of Sciences),School of Mathematics and Statistics
关键词
Squarefull integers; Exponential sums; 11L07; 11B83;
D O I
暂无
中图分类号
学科分类号
摘要
Let S(x) be the number of square-full integers not exceeding x and let Δ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (x)$$\end{document} be the error term in the asymptotic formula for S(x). Under the Riemann hypothesis, we get that Δ(x)≪x3282333\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (x)\ll x^{\frac{328}{2333}}$$\end{document}, which improves the exponent 121860\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{121}{860}$$\end{document} obtained by Liu [6].
引用
收藏
页码:627 / 634
页数:7
相关论文
共 50 条