A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems

被引:0
|
作者
Sunil Kumar
Mukesh Kumar
机构
[1] Indian Institute of Technology (BHU),Department of Mathematical Sciences
[2] College of Charleston,Department of Mathematics
来源
Numerical Algorithms | 2017年 / 76卷
关键词
Singularly perturbed; Parameterized problems; Delay differential problems; Uniform convergence; Layer-adapted meshes;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose a hybrid difference scheme for solving parameterized singularly perturbed delay differential problems. A unified error analysis framework for the proposed hybrid scheme is given that allows to conclude uniform convergence of 𝓞(N−2ln2N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(N^{-2}\ln ^{2} N)$\end{document} on Shishkin meshes and 𝓞(N−2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(N^{-2})$\end{document} on Bakhvalov meshes, where N is the number of mesh intervals in the domain. Numerical results are included to confirm the theoretical estimates.
引用
收藏
页码:349 / 360
页数:11
相关论文
共 50 条