Random matrices and quantum Hamilton-Jacobi method

被引:0
|
作者
K. Haritha
K. V. S. Shiv Chaitanya
机构
[1] BITS Pilani,Department of Physics
[2] Hyderabad Campus,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we start with the quantum Hamilton-Jacobi approach and show that the underlying complex pole evolution of the Schrödinger equation is described by the quantum action in terms of a random matrix. The wave function is given by the random matrix probability distribution function. In literature this is known as the famous Cole-Hopf Transformation.
引用
收藏
页码:151 / 158
页数:7
相关论文
共 50 条
  • [1] Random matrices and quantum Hamilton-Jacobi method
    Haritha, K.
    Chaitanya, K. V. S. Shiv
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (02): : 151 - 158
  • [2] ON THE QUANTUM HAMILTON-JACOBI FORMALISM
    DECASTRO, AS
    DUTRA, AD
    FOUNDATIONS OF PHYSICS, 1991, 21 (06) : 649 - 663
  • [3] Quantum Hamilton-Jacobi theory
    Roncadelli, Marco
    Schulman, L. S.
    PHYSICAL REVIEW LETTERS, 2007, 99 (17)
  • [4] Quantum Hamilton-Jacobi equation
    Periwal, V
    PHYSICAL REVIEW LETTERS, 1998, 80 (20) : 4366 - 4369
  • [5] On the Hamilton-Jacobi method in classical and quantum nonconservative systems
    de Souza Dutra, A.
    Correa, R. A. C.
    Moraes, P. H. R. S.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (08):
  • [6] RANDOM WALK AND THE HAMILTON-JACOBI EQUATION
    EVERETT, CJ
    ULAM, SM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (01) : 63 - 64
  • [7] An extension of the Hamilton-Jacobi method
    Kozlov, VV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1996, 60 (06): : 911 - 920
  • [8] Hamilton-Jacobi Method and Gravitation
    Di Criscienzo, R.
    Vanzo, L.
    Zerbini, S.
    COSMOLOGY, QUANTUM VACUUM AND ZETA FUNCTIONS: IN HONOR OF EMILIO ELIZALDE, 2011, 137 : 157 - 164
  • [9] An extension of the Hamilton-Jacobi method
    Kozlov, V. V.
    DOKLADY MATHEMATICS, 2012, 85 (02) : 301 - 303
  • [10] An extension of the Hamilton-Jacobi method
    V. V. Kozlov
    Doklady Mathematics, 2012, 85 : 301 - 303