In this paper, we consider the two-dimensional Hausdorff operators on the power weighted Hardy space H|X|α1(R2)(−1≤α≤0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$H_{{{\left| X \right|}^\alpha }}^1({R^2})( - 1 \leqslant \alpha \leqslant 0)$$
\end{document}
, defined by HΦ,Af(x)=∫R2Φ(u)f(A(u)x)du,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${H_{\Phi ,A}}f(x) = \int {_{{R^2}}} \Phi (u)f(A(u)x)du,$$
\end{document}, where Φ ∈ Lloc1(R2), A(u) = (aij(u))i,j=12 is a 2 × 2 matrix, and each ai,j is a measurable function. We obtain that HΦ,A is bounded from H|X|α1(R2)(−1≤α≤0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$H_{{{\left| X \right|}^\alpha }}^1({R^2})( - 1 \leqslant \alpha \leqslant 0)$$
\end{document}
to itself, if ∫R2|Φ(u)||detA−1(u)|‖A(u)‖−αln(1+‖A−1(u)‖2|detA−1(u)|)du<∞.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\int {_{{R^2}}} \left| {\Phi (u)} \right|\left| {\det \;{A^{ - 1}}(u)} \right|{\left\| {A(u)} \right\|^{ - \alpha }}\;\ln \;(1 + \frac{{{{\left\| {{A^{ - 1}}(u)} \right\|}^2}}}{{\left| {\det \;{A^{ - 1}}(u)} \right|}})du < \infty .$$
\end{document}. This result improves some known theorems, and in some sense it is sharp.