Some functional equations on standard operator algebras

被引:0
|
作者
A. Fošner
J. Vukman
机构
[1] University of Maribor,Department of Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics
来源
Acta Mathematica Hungarica | 2008年 / 118卷
关键词
ring; *-ring; prime ring; semiprime ring; Banach space; Hilbert space; standard operator algebra; derivation; Jordan derivation; bicircular projection; 13N15; 16E99; 39B05; 46K15;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to prove the following result. Let H be a complex Hilbert space, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B} $$\end{document}(H) be the algebra of all bounded linear operators on H, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}(H) ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B} $$\end{document}(H) be a standard operator algebra which is closed under the adjoint operation. Suppose that T: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}(H) → \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B} $$\end{document}(H) is a linear mapping satisfying T(AA* A) = T(A)A* A − AT(A*)A + AA*T(A) for all A ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}(H). Then T is of the form T(A) = AB + BA for all A ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}(H), where B is a fixed operator from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B} $$\end{document}(H). A result concerning functional equations related to bicircular projections is proved
引用
收藏
页码:299 / 306
页数:7
相关论文
共 50 条