The methods of Lp estimation are used to discuss the extinction phenomena of the solutions to the following reaction-diffusion equations with initial-boundnary values\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\begin{gathered} \partial u/\partial t = \Delta u - \lambda \left| { u } \right|^{\gamma - 1} u - \beta u ((x,t) \in \Omega \times (0, + \infty )), \hfill \\ u(x,t)\left| {_{\partial \Omega \times (0, + \infty )} = 0,} \right. \hfill \\ u(x,0) = u_0 (x) \in H_0^1 (\Omega ) \cap L^{1 + \gamma } (\Omega ) (x \in \Omega ) \hfill \\ \end{gathered}$$
\end{document}. Sufficient and necessary conditions about the extinction of the solutions is given. Here γ>0, γ>0, β>0 are constants, Ω∈RN is bounded with smooth boundary ∂Ω. At last, it is simulated with a higher order equation by using the present methods.