Asymptotic Poisson Character of Extremes in Non-Stationary Gaussian Models

被引:0
|
作者
Jean-Marc Azaïs
Cécile Mercadier
机构
[1] Université Paul Sabatier,Laboratoire de Statistique et Probabilités
[2] Université Paul Sabatier,Laboratoire de Statistique et Probabilités, UMR C5583
关键词
Gumbel distribution; non-stationary; Poisson process; supremum of Gaussian process; upcrossings;
D O I
10.1007/s10687-004-4722-2
中图分类号
学科分类号
摘要
Let X be a non-stationary Gaussian process, asymptotically centered with constant variance. Let u be a positive real. Define Ru(t) as the number of upcrossings of level u by the process X on the interval (0, t]. Under some conditions we prove that the sequence of point processes (Ru)u>0 converges weakly, after normalization, to a standard Poisson process as u tends to infinity. In consequence of this study we obtain the weak convergence of the normalized supremum to a Gumbel distribution.
引用
收藏
页码:301 / 318
页数:17
相关论文
共 50 条
  • [1] A class of models for non-stationary Gaussian processes
    Grigoriu, M
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2003, 18 (03) : 203 - 213
  • [2] Non-stationary Gaussian models with physical barriers
    Bakka, Haakon
    Vanhatalo, Jarno
    Illian, Janine B.
    Simpson, Daniel
    Rue, Havard
    [J]. SPATIAL STATISTICS, 2019, 29 : 268 - 288
  • [3] Almost Sure Asymptotics for Extremes of Non-stationary Gaussian Random Fields
    Zhongquan TAN
    Yuebao WANG
    [J]. Chinese Annals of Mathematics,Series B, 2014, 35 (01) : 125 - 138
  • [4] Almost sure asymptotics for extremes of non-stationary Gaussian random fields
    Tan, Zhongquan
    Wang, Yuebao
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (01) : 125 - 138
  • [5] Almost sure asymptotics for extremes of non-stationary Gaussian random fields
    Zhongquan Tan
    Yuebao Wang
    [J]. Chinese Annals of Mathematics, Series B, 2014, 35 : 125 - 138
  • [6] Smooth-Transition Regression Models for Non-Stationary Extremes
    Hambuckers, Julien
    Kneib, Thomas
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 21 (02) : 445 - 484
  • [7] Extremes of stationary Gaussian storage models
    Debicki, Krzysztof
    Liu, Peng
    [J]. EXTREMES, 2016, 19 (02) : 273 - 302
  • [8] Extremes of stationary Gaussian storage models
    Krzysztof Dębicki
    Peng Liu
    [J]. Extremes, 2016, 19 : 273 - 302
  • [9] Non-Gaussian non-stationary models for natural hazard modeling
    Poirion, Fabrice
    Zentner, Irmela
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) : 5938 - 5950
  • [10] ENSO's non-stationary and non-Gaussian character: the role of climate shifts
    Boucharel, J.
    Dewitte, B.
    Garel, B.
    du Penhoat, Y.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2009, 16 (04) : 453 - 473