Predicting Blood Donors Using Machine Learning Techniques

被引:0
|
作者
Christian Kauten
Ashish Gupta
Xiao Qin
Glenn Richey
机构
[1] Auburn University,Computer Science and Software Engineering, Samuel Ginn College of Engineering
[2] Auburn University,Department of Systems & Technology, Harbert College of Business
[3] Auburn University,Department of Supply Chain Management, Harbert College of Business
来源
关键词
Analytics; Blood donors; Blood supply; Machine learning; Retention;
D O I
暂无
中图分类号
学科分类号
摘要
The United States’ blood supply chain is experiencing market decline due to recent innovations in surgical practice, transfusion management, and hospital policy. These innovations strain US blood centers, resulting in cuts to surge capacities, consolidation, and reduced funding for research and outreach programs. In this study, we use data from a regional blood center to explore the application of contemporary machine learning algorithms for modeling donor retention. Such predictive models of donor retention can be used to design more cost effective donor outreach programs. Using data from a large US blood center paired with random forest classifiers, we are able to build a model of donor retention with a Mathews correlation of coefficient of 0.851.
引用
收藏
页码:1547 / 1562
页数:15
相关论文
共 50 条
  • [1] Predicting Blood Donors Using Machine Learning Techniques
    Kauten, Christian
    Gupta, Ashish
    Qin, Xiao
    Richey, Glenn
    [J]. INFORMATION SYSTEMS FRONTIERS, 2022, 24 (05) : 1547 - 1562
  • [2] Predicting Diabetes Using Machine Learning Techniques
    Kirgil, Elif Nur Haner
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    [J]. 2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 137 - 141
  • [3] Predicting IRI Using Machine Learning Techniques
    Ankit Sharma
    S. N. Sachdeva
    Praveen Aggarwal
    [J]. International Journal of Pavement Research and Technology, 2023, 16 : 128 - 137
  • [4] Predicting IRI Using Machine Learning Techniques
    Sharma, Ankit
    Sachdeva, S. N.
    Aggarwal, Praveen
    [J]. INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (01) : 128 - 137
  • [5] Predicting bank insolvencies using machine learning techniques
    Petropoulos, Anastasios
    Siakoulis, Vasilis
    Stavroulakis, Evangelos
    Vlachogiannakis, Nikolaos E.
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (03) : 1092 - 1113
  • [6] Predicting Driver Destination using Machine Learning Techniques
    Manasseh, Christian
    Sengupta, Raja
    [J]. 2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 142 - 147
  • [7] Predicting Students' Emotions Using Machine Learning Techniques
    Altrabsheh, Nabeela
    Cocea, Mihaela
    Fallahkhair, Sanaz
    [J]. ARTIFICIAL INTELLIGENCE IN EDUCATION, AIED 2015, 2015, 9112 : 537 - 540
  • [8] Predicting Software Anomalies using Machine Learning Techniques
    Alonso, Javier
    Belanche, Lluis
    Avresky, Dimiter R.
    [J]. 2011 10TH IEEE INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2011,
  • [9] Predicting performance of swimmers using machine learning techniques
    Guerra-Salcedo, Cesar M.
    Janek, Libor
    Perez-Ortega, Joaquin
    Pazos-Rangel, Rodolfo A.
    [J]. WMSCI 2005: 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Vol 3, 2005, : 146 - 148
  • [10] Predicting Employee Attrition Using Machine Learning Techniques
    Fallucchi, Francesca
    Coladangelo, Marco
    Giuliano, Romeo
    De Luca, Ernesto William
    [J]. COMPUTERS, 2020, 9 (04) : 1 - 17