Extensions of Results on Rainbow Hamilton Cycles in Uniform Hypergraphs

被引:0
|
作者
Andrzej Dudek
Michael Ferrara
机构
[1] Western Michigan University,Department of Mathematics
[2] University of Colorado Denver,Department of Mathematical and Statistical Sciences
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Hamiltonian cycle; Rainbow; Uniform hypergraph; 05C38; 05C65; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
Let Kn(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_n^{(k)}}$$\end{document} be the complete k-uniform hypergraph, k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k\ge3}$$\end{document}, and let ℓ be an integer such that 1 ≤ ℓ ≤ k−1 and k−ℓ divides n. An ℓ-overlapping Hamilton cycle in Kn(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_n^{(k)}}$$\end{document} is a spanning subhypergraph C of Kn(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_n^{(k)}}$$\end{document} with n/(k−ℓ) edges and such that for some cyclic ordering of the vertices each edge of C consists of k consecutive vertices and every pair of consecutive edges in C intersects in precisely ℓ vertices. An edge-coloring of Kn(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_n^{(k)}}$$\end{document} is (a, r)-bounded if every subset of a vertices of Kn(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_n^{(k)}}$$\end{document} is contained in at most r edges of the same color. In this paper, we refine recent results of the first author, Frieze and Ruciński by proving that there is a constant c = c(k, ℓ) such that every (ℓ,cnk-ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\ell, cn^{k-\ell})}$$\end{document} -bounded edge-colored Kn(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_n^{(k)}}$$\end{document} in which no color appears more that cnk-1 times contains a rainbow ℓ-overlapping Hamilton cycle. We also show that there is a constant c′ = c′(k, ℓ) such that every (ℓ, c′nk-ℓ)-bounded edge-colored Kn(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_n^{(k)}}$$\end{document} contains a properly colored ℓ-overlapping Hamilton cycle.
引用
收藏
页码:577 / 583
页数:6
相关论文
共 50 条
  • [1] Extensions of Results on Rainbow Hamilton Cycles in Uniform Hypergraphs
    Dudek, Andrzej
    Ferrara, Michael
    [J]. GRAPHS AND COMBINATORICS, 2015, 31 (03) : 577 - 583
  • [2] Rainbow Hamilton cycles in uniform hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    Rucinski, Andrzej
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [3] On rainbow Hamilton cycles in random hypergraphs
    Dudek, Andrzej
    English, Sean
    Frieze, Alan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [4] Forbidding Hamilton cycles in uniform hypergraphs
    Han, Jie
    Zhao, Yi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 143 : 107 - 115
  • [5] Dirac-type results for loose Hamilton cycles in uniform hypergraphs
    Han, Hiep
    Schacht, Mathias
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 332 - 346
  • [6] Hamilton l-cycles in uniform hypergraphs
    Kuehn, Daniela
    Mycroft, Richard
    Osthus, Deryk
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) : 910 - 927
  • [7] Tight Hamilton cycles in random uniform hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (03) : 374 - 385
  • [8] Loose Hamilton Cycles in Random Uniform Hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [9] PACKING TIGHT HAMILTON CYCLES IN UNIFORM HYPERGRAPHS
    Bal, Deepak
    Frieze, Alan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) : 435 - 451
  • [10] Decompositions of complete uniform hypergraphs into Hamilton Berge cycles
    Kuehn, Daniela
    Osthus, Deryk
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 128 - 135