Linear programming selection of internal financial laws and a knapsack problem

被引:0
|
作者
A. Basso
B. Viscolani
机构
[1] Dipartimento di Matematica Applicata “B. de Finetti”,
[2] Università di Trieste,undefined
[3] Piazzale Europa 1,undefined
[4] 34127 Trieste,undefined
[5] Italy. E-mail: antonellab@econ.univ.trieste.it,undefined
[6] Dipartimento di Matematica Pura ed Applicata,undefined
[7] Università di Padova,undefined
[8] Via Belzoni 7,undefined
[9] 35131 Padova,undefined
[10] Italy. E-mail: viscolani@math.unipd.it,undefined
来源
CALCOLO | 2000年 / 37卷
关键词
Objective Function; Programming Problem; Closed Form; Original Problem; Linear Programming Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We formulate and solve explicitly a linear programming problem that arises from the problem of choosing an internal financial law of a given financial project such that the associated discount vector maximizes a linear objective function. If the original problem has optimal solutions, then it is equivalent to a knapsack problem. We obtain its basic optimal solutions in closed form. After considering the special case of nonnegative preference directions, we also obtain a new characterization of the existence of internal financial laws.
引用
收藏
页码:47 / 57
页数:10
相关论文
共 50 条
  • [1] Linear programming selection of internal financial laws and a knapsack problem
    Basso, A
    Viscolani, B
    [J]. CALCOLO, 2000, 37 (01) : 47 - 57
  • [2] STOCHASTIC LINEAR KNAPSACK PROGRAMMING PROBLEM AND ITS APPLICATION TO A PORTFOLIO SELECTION PROBLEM
    MORITA, H
    ISHII, H
    NISHIDA, T
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1989, 40 (03) : 329 - 336
  • [3] INTEGRAL LINEAR PROGRAMMING AND KNAPSACK PROBLEM
    SCHMID, B
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 23 (04): : 255 - &
  • [4] Comparative analysis of linear programming relaxations for the robust knapsack problem
    Joung, Seulgi
    Oh, Seyoung
    Lee, Kyungsik
    [J]. ANNALS OF OPERATIONS RESEARCH, 2023, 323 (1-2) : 65 - 78
  • [5] ON A CARDINALITY CONSTRAINED LINEAR-PROGRAMMING KNAPSACK-PROBLEM
    DUDZINSKI, K
    [J]. OPERATIONS RESEARCH LETTERS, 1989, 8 (04) : 215 - 218
  • [6] Linear programming for the 0-1 quadratic knapsack problem
    Billionnet, A
    Calmels, F
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 92 (02) : 310 - 325
  • [7] Comparative analysis of linear programming relaxations for the robust knapsack problem
    Seulgi Joung
    Seyoung Oh
    Kyungsik Lee
    [J]. Annals of Operations Research, 2023, 323 : 65 - 78
  • [8] Combining linear programming and multiobjective evolutionary computation for solving a type of stochastic knapsack problem
    Mallor-Gimenez, Fermin
    Blanco, Rosa
    Azcarate, Cristina
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 531 - +
  • [9] A linear programming model of fuzzy portfolio selection problem
    Lan, Yuping
    Lv, Xuanli
    Zhang, Weiguo
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 1236 - +
  • [10] A hybrid of Nested Partition, Binary Ant System, and Linear Programming for the multidimensional knapsack problem
    Al-Shihabi, S.
    Olafsson, S.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2010, 37 (02) : 247 - 255