An active set Barzilar–Borwein algorithm for l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{0}$$\end{document} regularized optimization

被引:0
|
作者
Wanyou Cheng
Zixin Chen
Qingjie Hu
机构
[1] Dongguan University of Technology,College of Computer and Science Technology
[2] Dongguan University of Technology,Network and Educational Technology Center
[3] Guilin University of Electronic Technology,School of Mathematics and Computing Science
关键词
minimization; Active set; Barzilar–Borwein; 90C06; 90C25; 65Y20; 94A08;
D O I
10.1007/s10898-019-00830-w
中图分类号
学科分类号
摘要
In this paper, we develop an active set identification technique for the ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _0$$\end{document} regularization optimization. Such a technique has a strong ability to identify the zero components in a neighbourhood of a strict L-stationary point. Based on the identification technique, we propose an active set Barzilar–Borwein algorithm and prove that any limit point of the sequence generated by the algorithm is a strong stationary point. Some preliminary numerical results are provided, showing that the method is promising.
引用
收藏
页码:769 / 791
页数:22
相关论文
共 50 条