Unsupervised video object segmentation using conditional random fields

被引:0
|
作者
Asma Hamza Bhatti
Anis Ur Rahman
Asad Anwar Butt
机构
[1] National University of Sciences and Technology,School of Electrical Engineering and Computer Sciences
[2] National Institute of Standards and Technology (NIST),undefined
来源
关键词
Segmentation; Video; Superpixels;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose a graph-based superpixel segmentation technique to perform spatiotemporal oversegmentation of videos. The generated superpixels are post-processed by applying a straightforward threshold-based foreground separation model. These superpixels are used in a conditional random field, and a potential function is defined, which is solved using energy minimization techniques to produce a final segmentation. Experiments on two datasets containing over 24 videos demonstrate that our method produces competitive or better results for the video object segmentation task over the state-of-the-art algorithms.
引用
收藏
页码:9 / 16
页数:7
相关论文
共 50 条
  • [1] Unsupervised video object segmentation using conditional random fields
    Bhatti, Asma Hamza
    Rahman, Anis Ur
    Butt, Asad Anwar
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (01) : 9 - 16
  • [2] SUPERPIXEL-BASED OBJECT CLASS SEGMENTATION USING CONDITIONAL RANDOM FIELDS
    Li, Xi
    Sahbi, Hichem
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1101 - 1104
  • [3] Using thermal intensities to build conditional random fields for object segmentation at night
    Dutta, Arnald
    Mandal, Bodhisatwa
    Ghosh, Swarnendu
    Das, Nibaran
    [J]. 2020 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NETWORKS (CINE 2020), 2020,
  • [4] Segmentation of video sequences using spatial-temporal conditional random fields
    Lei Zhang
    Qiang Ji
    [J]. 2008 IEEE WORKSHOP ON MOTION AND VIDEO COMPUTING, 2008, : 15 - 21
  • [5] Utterance Segmentation Using Conditional Random Fields
    Ben Dbabis, Samira
    Reguii, Boutheina
    Ghorbel, Hatem
    Belguith, Lamia Hadrich
    [J]. INNOVATION MANAGEMENT AND EDUCATION EXCELLENCE VISION 2020: FROM REGIONAL DEVELOPMENT SUSTAINABILITY TO GLOBAL ECONOMIC GROWTH, VOLS I - VI, 2016, : 3420 - 3426
  • [6] Unsupervised Energy Disaggregation Using Conditional Random Fields
    Heracleous, Panikos
    Angkititrakul, Pongtep
    Kitaoka, Norihide
    Takeda, Kazuya
    [J]. 2014 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT EUROPE), 2014,
  • [7] AN UNSUPERVISED SEGMENTATION METHOD FOR REMOTE SENSING IMAGERY BASED ON CONDITIONAL RANDOM FIELDS
    Soares, A. R.
    Korting, T. S.
    Fonseca, L. M. G.
    Neves, A. K.
    [J]. 2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 1 - 5
  • [8] Object Segmentation Based on Gaussian Mixture Model and Conditional Random Fields
    Qi, Yali
    Zhang, Guoshan
    Qi, Yali
    Li, Yeli
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 900 - 904
  • [9] Unsupervised image segmentation using Markov Random Fields
    Sengur, Abdulkadir
    Turkoglu, Ibrahim
    Ince, M. Cevdet
    [J]. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 158 - 167
  • [10] Unsupervised video segmentation and object tracking
    Sista, S
    Kashyap, RL
    [J]. COMPUTERS IN INDUSTRY, 2000, 42 (2-3) : 127 - 146