Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics

被引:0
|
作者
Maximilian Zanner
Tuure Orell
Christian M. F. Schneider
Romain Albert
Stefan Oleschko
Mathieu L. Juan
Matti Silveri
Gerhard Kirchmair
机构
[1] University of Innsbruck,Institute for Experimental Physics
[2] Austrian Academy of Sciences,Institute for Quantum Optics and Quantum Information
[3] University of Oulu,Nano and Molecular Systems Research Unit
[4] Université de Sherbrooke,Institut Quantique and Département de Physique
来源
Nature Physics | 2022年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Superconducting qubits in a waveguide have long-range interactions mediated by photons that cause the emergence of collective states. Destructive interference between the qubits decouples the collective dark states from the waveguide environment. Their inability to emit photons into the waveguide render dark states a valuable resource for preparing long-lived quantum many-body states and realizing quantum information protocols in open quantum systems. However, they also decouple from fields that drive the waveguide, making manipulation a challenge. Here we show the coherent control of a collective dark state that is realized by controlling the interactions between four superconducting transmon qubits and local drives. The dark state’s protection against decoherence results in decay times that exceed those of the waveguide-limited single qubits by more than two orders of magnitude. Moreover, we perform a phase-sensitive spectroscopy of the two-excitation manifold and reveal bosonic many-body statistics in the transmon array. Our dark-state qubit provides a starting point for implementing quantum information protocols with collective states.
引用
收藏
页码:538 / 543
页数:5
相关论文
共 50 条
  • [1] Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics
    Zanner, Maximilian
    Orell, Tuure
    Schneider, Christian M. F.
    Albert, Romain
    Oleschko, Stefan
    Juan, Mathieu L.
    Silveri, Matti
    Kirchmair, Gerhard
    [J]. NATURE PHYSICS, 2022, 18 (05) : 538 - +
  • [2] Multi-qubit parity measurement in circuit quantum electrodynamics
    DiVincenzo, David P.
    Solgun, Firat
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [3] Topological quantum gate entanglers for a multi-qubit state
    Heydari, Hoshang
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (32) : 9877 - 9882
  • [4] Quantum state tomography of multi-qubit systems - a comparative study
    Pan, Chengwei
    Zhang, Jiaoyang
    Cong, Shuang
    Harraz, Sajede
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2022, 20 (08)
  • [5] Nanofabrication of a multi-qubit solid state quantum computer device
    Buehler, TM
    McKinnon, RP
    Lumpkin, NE
    Brenner, R
    Dzurak, AS
    Clark, RG
    Jamieson, D
    McCallum, J
    [J]. EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 301 - 305
  • [6] Quantum Fisher Information and Heisenberg Limit in Multi-qubit State
    Hong-Gang Yi
    Rong-Hua Chen
    [J]. International Journal of Theoretical Physics, 2013, 52 : 233 - 238
  • [7] Quantum Fisher Information and Heisenberg Limit in Multi-qubit State
    Yi, Hong-Gang
    Chen, Rong-Hua
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (01) : 233 - 238
  • [8] Complete structural restoring of transferred multi-qubit quantum state
    Fel'dman, E. B.
    Pechen, A. N.
    Zenchuk, A. I.
    [J]. PHYSICS LETTERS A, 2021, 413
  • [9] Multi-qubit correction for quantum annealers
    Ramin Ayanzadeh
    John Dorband
    Milton Halem
    Tim Finin
    [J]. Scientific Reports, 11
  • [10] On the scheme of cavity photon elimination in multi-qubit circuit-quantum electrodynamics system
    Meng Jian-Yu
    Wang Pei-Yue
    Feng Wei
    Yang Guo-Jian
    Li Xin-Qi
    [J]. ACTA PHYSICA SINICA, 2012, 61 (24)