Sufficient Spectral Radius Conditions for Hamilton-Connectivity of k-Connected Graphs

被引:0
|
作者
Qiannan Zhou
Hajo Broersma
Ligong Wang
Yong Lu
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] University of Twente,Faculty of EEMCS
[3] Jiangsu Normal University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-connected graph; Hamilton-connected graph; Spectral radius; 05C50; 05C45; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
We present two new sufficient conditions in terms of the spectral radius ρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (G)$$\end{document} guaranteeing that a k-connected graph G is Hamilton-connected, unless G belongs to a collection of exceptional graphs. We use the Bondy–Chvátal closure to characterize these exceptional graphs.
引用
收藏
页码:2467 / 2485
页数:18
相关论文
共 50 条
  • [1] Sufficient Spectral Radius Conditions for Hamilton-Connectivity of k-Connected Graphs
    Zhou, Qiannan
    Broersma, Hajo
    Wang, Ligong
    Lu, Yong
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2467 - 2485
  • [2] On sufficient spectral radius conditions for hamiltonicity of k-connected graphs
    Zhou, Qiannan
    Broersma, Hajo
    Wang, Ligong
    Lu, Yong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 129 - 145
  • [3] Some sufficient conditions on k-connected graphs
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 332 - 339
  • [4] BOUNDING THE Aα-SPECTRAL RADIUS OF k-CONNECTED IRREGULAR GRAPHS
    Li, Jianxi
    Chen, Hongzhang
    Huang, Peng
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (01) : 227 - 234
  • [5] Sufficient conditions for Hamilton-connected graphs in terms of (signless Laplacian) spectral radius
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 594 (594) : 205 - 225
  • [6] The signless Laplacian spectral radius of k-connected irregular graphs
    Shiu, Wai Chee
    Huang, Peng
    Sun, Pak Kiu
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (04): : 830 - 839
  • [7] The signless Laplacian spectral radius of k-connected irregular graphs
    Ning, Wenjie
    Lu, Mei
    Wang, Kun
    Jiang, Daqing
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 553 : 117 - 128
  • [8] Sufficient Conditions for Graphs to Be k-Connected, Maximally Connected, and Super-Connected
    Hong, Zhen-Mu
    Xia, Zheng-Jiang
    Chen, Fuyuan
    Volkmann, Lutz
    [J]. COMPLEXITY, 2021, 2021
  • [9] Algebraic connectivity of k-connected graphs
    Steve Kirkland
    Israel Rocha
    Vilmar Trevisan
    [J]. Czechoslovak Mathematical Journal, 2015, 65 : 219 - 236
  • [10] Algebraic connectivity of k-connected graphs
    Kirkland, Steve
    Rocha, Israel
    Trevisan, Vilmar
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 219 - 236