Machine learning and deep learning based predictive quality in manufacturing: a systematic review

被引:0
|
作者
Hasan Tercan
Tobias Meisen
机构
[1] University of Wuppertal,
来源
关键词
Industry 4.0; Predictive quality; Machine learning; Deep learning; Manufacturing; Quality assurance; Artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
With the ongoing digitization of the manufacturing industry and the ability to bring together data from manufacturing processes and quality measurements, there is enormous potential to use machine learning and deep learning techniques for quality assurance. In this context, predictive quality enables manufacturing companies to make data-driven estimations about the product quality based on process data. In the current state of research, numerous approaches to predictive quality exist in a wide variety of use cases and domains. Their applications range from quality predictions during production using sensor data to automated quality inspection in the field based on measurement data. However, there is currently a lack of an overall view of where predictive quality research stands as a whole, what approaches are currently being investigated, and what challenges currently exist. This paper addresses these issues by conducting a comprehensive and systematic review of scientific publications between 2012 and 2021 dealing with predictive quality in manufacturing. The publications are categorized according to the manufacturing processes they address as well as the data bases and machine learning models they use. In this process, key insights into the scope of this field are collected along with gaps and similarities in the solution approaches. Finally, open challenges for predictive quality are derived from the results and an outlook on future research directions to solve them is provided.
引用
收藏
页码:1879 / 1905
页数:26
相关论文
共 50 条
  • [1] Machine learning and deep learning based predictive quality in manufacturing: a systematic review
    Tercan, Hasan
    Meisen, Tobias
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (07) : 1879 - 1905
  • [2] A Systematic Review on Machine Learning and Deep Learning Based Predictive Models for Health Informatics
    Aloyuni, Saleh Abdullah
    JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL, 2021, 33 (47B) : 183 - 194
  • [3] Machine learning and deep learning predictive models for type 2 diabetes: a systematic review
    Fregoso-Aparicio, Luis
    Noguez, Julieta
    Montesinos, Luis
    Garcia-Garcia, Jose A.
    DIABETOLOGY & METABOLIC SYNDROME, 2021, 13 (01):
  • [4] Machine learning and deep learning predictive models for type 2 diabetes: a systematic review
    Luis Fregoso-Aparicio
    Julieta Noguez
    Luis Montesinos
    José A. García-García
    Diabetology & Metabolic Syndrome, 13
  • [5] Systematic Review of Machine Learning and Deep Learning Techniques for Spatiotemporal Air Quality Prediction
    Agbehadji, Israel Edem
    Obagbuwa, Ibidun Christiana
    ATMOSPHERE, 2024, 15 (11)
  • [6] Systematic Review of Machine Learning and Deep Learning Techniques for Spatiotemporal Air Quality Prediction
    Agbehadji, Israel Edem
    Obagbuwa, Ibidun Christiana
    Atmosphere, 15 (11):
  • [7] Predicting Student Dropout based on Machine Learning and Deep Learning: A Systematic Review
    Andrade-Giron, Daniel
    Sandivar-Rosas, Juana
    Marin-Rodriguez, William
    Ramirez, Edgar Susanibar-
    Toro-Dextre, Eliseo
    Ausejo-Sanchez, Jose
    Villarreal-Torres, Henry
    Angeles-Morales, Julio
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2023, 10 (05) : 1 - 11
  • [8] On the Data Quality and Imbalance in Machine Learning-based Design and Manufacturing-A Systematic Review
    Xie, Jiarui
    Sun, Lijun
    Zhao, Yaoyao Fiona
    ENGINEERING, 2025, 45 : 105 - 131
  • [9] Systematic Review of Deep Learning and Machine Learning for Building Energy
    Ardabili, Sina
    Abdolalizadeh, Leila
    Mako, Csaba
    Torok, Bernat
    Mosavi, Amir
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [10] A Systematic Review on Application of Deep Learning Techniques for Software Quality Predictive Modeling
    Malhotra, Ruchika
    Gupta, Shreya
    Singh, Tanishq
    2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020), 2020, : 332 - 337