Random sampling of bandlimited functions

被引:0
|
作者
Richard F. Bass
Karlheinz Gröchenig
机构
[1] The University of Connecticut,Department of Mathematics
[2] University of Vienna,Faculty of Mathematics
来源
关键词
Independent Random Variable; Trigonometric Polynomial; Eigenvalue Distribution; Stable Sampling; Poisson Random Variable;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of random sampling for bandlimited functions. When can a bandlimited function f be recovered from randomly chosen samples f(xj), j ∈ J ⊂ ℕ? We estimate the probability that a sampling inequality of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A\left\| f \right\|_2^2 \leqslant \sum\limits_{j \in J} {|f(x_j )|^2 \leqslant B\left\| f \right\|_2^2 } $$\end{document} hold uniformly for all functions f ∈ L2(ℝd) with supp \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat f \subseteq [ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2},{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}]^d $$\end{document} or for some subset of bandlimited functions.
引用
收藏
页码:1 / 28
页数:27
相关论文
共 50 条
  • [1] Random sampling of bandlimited functions
    Bass, Richard F.
    Groechenig, Karlheinz
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) : 1 - 28
  • [2] Sampling and interpolation of bandlimited functions
    Han Huili
    Hua, Liu
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (11) : 1862 - 1870
  • [3] Nonuniform sampling of bandlimited functions
    Shin, Chang Eon
    Lee, Mun Bae
    Rim, Kyung Soo
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) : 3814 - 3819
  • [4] Random sampling of bandlimited signals on graphs
    Puy, Gilles
    Tremblay, Nicolas
    Gribonval, Remi
    Vandergheynst, Pierre
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 44 (02) : 446 - 475
  • [5] Random Sampling for Bandlimited Signals on Product Graphs
    Varma, Rohan
    Kovacevic, Jelena
    [J]. 2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [6] Sampling of bandlimited functions on unions of shifted lattices
    Behmard, H
    Faridani, A
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2002, 8 (01) : 43 - 58
  • [7] On Send-on-Delta Sampling of Bandlimited Functions
    Huber, Adrian E. G.
    Liu, Shih-Chii
    [J]. 2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 422 - 426
  • [8] SAMPLING BANDLIMITED FUNCTIONS OF POLYNOMIAL-GROWTH
    WALTER, GG
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (05) : 1198 - 1203
  • [9] IMPLICIT SAMPLING THEOREM FOR BOUNDED BANDLIMITED FUNCTIONS
    BARDAVID, I
    [J]. INFORMATION AND CONTROL, 1974, 24 (01): : 36 - 44
  • [10] Sampling of Bandlimited Functions on Unions of Shifted Lattices
    Hamid Behmard
    Adel Faridani
    [J]. Journal of Fourier Analysis and Applications, 2002, 8 : 43 - 58