Singular Integral Operators with Bergman–Besov Kernels on the Ball

被引:0
|
作者
H. Turgay Kaptanoğlu
A. Ersin Üreyen
机构
[1] Bilkent Üniversitesi,
[2] Matematik Bölümü,undefined
[3] Eskişehir Teknik Üniversitesi,undefined
[4] Fen Fakültesi Matematik Bölümü,undefined
来源
关键词
Integral operator; Bergman–Besov kernel; Bergman–Besov space; Bloch–Lipschitz space; Bergman–Besov projection; Radial fractional derivative; Schur test; Forelli–Rudin estimate; Inclusion relation; Primary 47B34; 47G10; Secondary 32A55; 45P05; 46E15; 32A37; 32A36; 30H25; 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
We completely characterize in terms of the six parameters involved the boundedness of all standard weighted integral operators induced by Bergman–Besov kernels acting between different Lebesgue classes with standard weights on the unit ball of CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^N$$\end{document}. The integral operators generalize the Bergman–Besov projections. To find the necessary conditions for boundedness, we employ a new versatile method that depends on precise imbedding and inclusion relations among various holomorphic function spaces. The sufficiency proofs are by Schur tests or integral inequalities.
引用
收藏
相关论文
共 50 条