Evidential fully convolutional network for semantic segmentation

被引:0
|
作者
Zheng Tong
Philippe Xu
Thierry Denœux
机构
[1] Université de technologie de Compiègne,
[2] CNRS,undefined
[3] Institut universitaire de France,undefined
来源
Applied Intelligence | 2021年 / 51卷
关键词
Evidence theory; Belief function; Fully convolutional network; Decision analysis; Semantic segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a hybrid architecture composed of a fully convolutional network (FCN) and a Dempster-Shafer layer for image semantic segmentation. In the so-called evidential FCN (E-FCN), an encoder-decoder architecture first extracts pixel-wise feature maps from an input image. A Dempster-Shafer layer then computes mass functions at each pixel location based on distances to prototypes. Finally, a utility layer performs semantic segmentation from mass functions and allows for imprecise classification of ambiguous pixels and outliers. We propose an end-to-end learning strategy for jointly updating the network parameters, which can make use of soft (imprecise) labels. Experiments using three databases (Pascal VOC 2011, MIT-scene Parsing and SIFT Flow) show that the proposed combination improves the accuracy and calibration of semantic segmentation by assigning confusing pixels to multi-class sets.
引用
收藏
页码:6376 / 6399
页数:23
相关论文
共 50 条
  • [1] Evidential fully convolutional network for semantic segmentation
    Tong, Zheng
    Xu, Philippe
    Denoeux, Thierry
    [J]. APPLIED INTELLIGENCE, 2021, 51 (09) : 6376 - 6399
  • [2] Parallel Fully Convolutional Network for Semantic Segmentation
    Ji, Jian
    Lu, Xiaocong
    Luo, Mai
    Yin, Minghui
    Miao, Qiguang
    Liu, Xiangzeng
    [J]. IEEE ACCESS, 2021, 9 : 673 - 682
  • [3] Fully Convolutional Network with Cluster for Semantic Segmentation
    Ma, Xiao
    Chen, Zhongbi
    Zhang, Jianlin
    [J]. ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [4] Fully convolutional network with attention modules for semantic segmentation
    Huang, Yunjia
    Xu, Haixia
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (05) : 1031 - 1039
  • [5] Image semantic segmentation with an improved fully convolutional network
    Kuo-Kun Tseng
    Haichuan Sun
    Junwu Liu
    Jiaqi Li
    K. L. Yung
    W. H. Ip
    [J]. Soft Computing, 2020, 24 : 8253 - 8273
  • [6] Image semantic segmentation with an improved fully convolutional network
    Tseng, Kuo-Kun
    Sun, Haichuan
    Liu, Junwu
    Li, Jiaqi
    Yung, K. L.
    Ip, W. H.
    [J]. SOFT COMPUTING, 2020, 24 (11) : 8253 - 8273
  • [7] Fully convolutional network with attention modules for semantic segmentation
    Yunjia Huang
    Haixia Xu
    [J]. Signal, Image and Video Processing, 2021, 15 : 1031 - 1039
  • [8] Semantic segmentation of mechanical parts based on Fully Convolutional Network
    Wu, Yuqi
    Zhang, Yinhui
    Zhang, Chunquan
    He, Zifen
    Zhang, Yue
    [J]. 2017 9TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC 2017), 2017, : 612 - 617
  • [9] PFCN: a fully convolutional network for point cloud semantic segmentation
    Lu, Jian
    Liu, Tong
    Luo, Maoxin
    Cheng, Haozhe
    Zhang, Kaibing
    [J]. ELECTRONICS LETTERS, 2019, 55 (20) : 1088 - 1089
  • [10] Hybrid Spiking Fully Convolutional Neural Network for Semantic Segmentation
    Zhang, Tao
    Xiang, Shuiying
    Liu, Wenzhuo
    Han, Yanan
    Guo, Xingxing
    Hao, Yue
    [J]. ELECTRONICS, 2023, 12 (17)