The K-meson form factor and charge radius: linking low-energy data to future Jefferson Laboratory measurements

被引:0
|
作者
A. F. Krutov
S. V. Troitsky
V. E. Troitsky
机构
[1] Samara University,D.V. Skobeltsyn Institute of Nuclear Physics
[2] Institute for Nuclear Research of the Russian Academy of Sciences,undefined
[3] 60th October Anniversary Prospect 7a,undefined
[4] M.V. Lomonosov Moscow State University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Starting from a successful model of the π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-meson electromagnetic form factor, we calculate a similar form factor, FK(Q2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{K}(Q^{2})$$\end{document}, of the charged K meson for a wide range of the momentum transfer squared, Q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{2}$$\end{document}. The only remaining free parameter is to be determined from the measurements of the K-meson charge radius, rK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{K}$$\end{document}. We fit this single parameter to the published data of the NA-7 experiment which measured FK(Q2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{K}(Q^{2})$$\end{document} at Q2→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{2}\rightarrow 0$$\end{document} and determine our preferred range of rK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{K}$$\end{document}, which happens to be close to recent lattice results. Still, the accuracy in the determination of rK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{K}$$\end{document} is poor. However, future measurements of the K-meson electromagnetic form factor at Q2≲5.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{2}\lesssim 5.5$$\end{document} GeV2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}, scheduled in Jefferson Laboratory for 2017, will test our approach and will reduce the uncertainty in rK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{K}$$\end{document} significantly.
引用
收藏
相关论文
共 12 条
  • [1] The K-meson form factor and charge radius: linking low-energy data to future Jefferson Laboratory measurements
    Krutov, A. F.
    Troitsky, S. V.
    Troitsky, V. E.
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (07):
  • [2] Improved bounds on the radius and curvature of the Kπ scalar form factor and implications to low-energy theorems
    Abbas, Gauhar
    Ananthanarayan, B.
    EUROPEAN PHYSICAL JOURNAL A, 2009, 41 (01): : 7 - 11
  • [3] Constraining low-energy proton capture on beryllium-7 through charge radius measurements
    Ryberg, Emil
    Forssen, Christian
    Hammer, H. -W.
    Platter, Lucas
    EUROPEAN PHYSICAL JOURNAL A, 2014, 50 (11):
  • [4] Constraining low-energy proton capture on beryllium-7 through charge radius measurements
    Emil Ryberg
    Christian Forssén
    H. -W. Hammer
    Lucas Platter
    The European Physical Journal A, 2014, 50
  • [5] Constraining the low-energy pion electromagnetic form factor with spacelike data
    B. Ananthanarayan
    S. Ramanan
    The European Physical Journal C, 2008, 54 : 461 - 470
  • [6] Constraining the low-energy pion electromagnetic form factor with spacelike data
    Ananthanarayan, B.
    Ramanan, S.
    EUROPEAN PHYSICAL JOURNAL C, 2008, 54 (03): : 461 - 470
  • [7] Stringent constraints on the scalar Kπ form factor from analyticity, unitarity and low-energy theorems
    Abbas, Gauhar
    Ananthanarayan, B.
    Caprini, I.
    Imsong, I. Sentitemsu
    Ramanan, S.
    EUROPEAN PHYSICAL JOURNAL A, 2010, 44 (02): : 175 - 179
  • [8] BOUNDS ON K DELTA 3 SCALAR FORM-FACTOR FROM LOW-ENERGY K PI PHASE-SHIFT
    BOURRELY, C
    NUCLEAR PHYSICS B, 1973, B 53 (02) : 289 - 302
  • [9] Constraining the low-energy pion electromagnetic form factor with space-like and phase of time-like data
    B. Ananthanarayan
    S. Ramanan
    The European Physical Journal C, 2009, 60 : 73 - 81
  • [10] Constraining the low-energy pion electromagnetic form factor with space-like and phase of time-like data
    Ananthanarayan, B.
    Ramanan, S.
    EUROPEAN PHYSICAL JOURNAL C, 2009, 60 (01): : 73 - 81