Methods for solving constrained convex minimization problems and finding zeros of the sum of two operators in Hilbert spaces

被引:0
|
作者
Ming Tian
Si-Wen Jiao
Yeong-Cheng Liou
机构
[1] Civil Aviation University of China,College of Science
[2] Civil Aviation University of China,Tianjin Key Laboratory for Advanced Signal Processing
[3] Cheng Shiu University,Department of Information Management
[4] Kaohsiung Medical University,Center for Fundamental Science
关键词
iterative method; fixed point; constrained convex minimization; maximal monotone operator; resolvent; inverse-strongly monotone mapping; strict pseudo-contraction; variational inequality; 58E35; 47H09; 65J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, let H be a real Hilbert space and let C be a nonempty, closed, and convex subset of H. We assume that (A+B)−10∩U≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(A+B)^{-1}0\cap U\neq\emptyset$\end{document}, where A:C→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A:C\rightarrow H$\end{document} is an α-inverse-strongly monotone mapping, B:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B:H\rightarrow H$\end{document} is a maximal monotone operator, the domain of B is included in C. Let U denote the solution set of the constrained convex minimization problem. Based on the viscosity approximation method, we use a gradient-projection algorithm to propose composite iterative algorithms and find a common solution of the problems which we studied. Then we regularize it to find a unique solution by gradient-projection algorithm. The point q∈(A+B)−10∩U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q\in (A+B)^{-1}0\cap U$\end{document} which we find solves the variational inequality 〈(I−f)q,p−q〉≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle(I-f)q, p-q\rangle\geq0$\end{document}, ∀p∈(A+B)−10∩U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\forall p\in(A+B)^{-1}0\cap U$\end{document}. Under suitable conditions, the constrained convex minimization problem can be transformed into the split feasibility problem. Zeros of the sum of two operators can be transformed into the variational inequality problem and the fixed point problem. Furthermore, new strong convergence theorems and applications are obtained in Hilbert spaces, which are useful in nonlinear analysis and optimization.
引用
收藏
相关论文
共 50 条
  • [1] Methods for solving constrained convex minimization problems and finding zeros of the sum of two operators in Hilbert spaces
    Tian, Ming
    Jiao, Si-Wen
    Liou, Yeong-Cheng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 27
  • [2] ON THE RELAXED HYBRID-EXTRAGRADIENT METHOD FOR SOLVING CONSTRAINED CONVEX MINIMIZATION PROBLEMS IN HILBERT SPACES
    Ceng, L. C.
    Chou, C. Y.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03): : 911 - 936
  • [3] Iterative methods for constrained convex minimization problem in Hilbert spaces
    Ming Tian
    Li-Hua Huang
    [J]. Fixed Point Theory and Applications, 2013
  • [4] Iterative methods for constrained convex minimization problem in Hilbert spaces
    Tian, Ming
    Huang, Li-Hua
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [5] Some iterative methods for finding fixed points and for solving constrained convex minimization problems
    Ceng, L. -C.
    Ansari, Q. H.
    Yao, J. -C.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) : 5286 - 5302
  • [6] General Iterative Methods for System of Equilibrium Problems and Constrained Convex Minimization Problem in Hilbert Spaces
    Duan, Peichao
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [7] Algorithms for zeros of two accretive operators for solving convex minimization problems and its application to image restoration problems
    Kitkuan, Duangkamon
    Kumam, Poom
    Padcharoen, Anantachai
    Kumam, Wiyada
    Thounthong, Phatiphat
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 354 : 471 - 495
  • [9] Hybrid Extragradient Methods for Finding Zeros of Accretive Operators and Solving Variational Inequality and Fixed Point Problems in Banach Spaces
    Ceng, Lu-Chuan
    Wen, Ching-Feng
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [10] A modified regularization method for finding zeros of monotone operators in Hilbert spaces
    Prasit Cholamjiak
    Watcharaporn Cholamjiak
    Suthep Suantai
    [J]. Journal of Inequalities and Applications, 2015