Short-Time Nonlinear Effects in the Exciton-Polariton System

被引:0
|
作者
Cristi D. Guevara
Stephen P. Shipman
机构
[1] Louisiana State University,Department of Mathematics
来源
关键词
Exciton-polariton; Nonlinear dispersion; Nonlinear Schrödinger; Photon; Short-time behavior; 35Q55; 35B40; 35Q70;
D O I
暂无
中图分类号
学科分类号
摘要
In the exciton-polariton system, a linear dispersive photon field is coupled to a nonlinear exciton field. Short-time analysis of the lossless system shows that, when the photon field is excited, the time required for that field to exhibit nonlinear effects is longer than the time required for the nonlinear Schrödinger equation, in which the photon field itself is nonlinear. When the initial condition is scaled by ϵα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon ^\alpha $$\end{document}, it is found that the relative error committed by omitting the nonlinear term in the exciton-polariton system remains within ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} for all times up to t=Cϵβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=C\epsilon ^\beta $$\end{document}, where β=(1-α(p-1))/(p+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =(1-\alpha (p-1))/(p+2)$$\end{document}. This is in contrast to β=1-α(p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =1-\alpha (p-1)$$\end{document} for the nonlinear Schrödinger equation. The result is proved for solutions in Hs(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^n)$$\end{document} for s>n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>n/2$$\end{document}. Numerical computations indicate that the results are sharp and also hold in L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbb {R}^n)$$\end{document}.
引用
收藏
页码:579 / 597
页数:18
相关论文
共 50 条
  • [1] Short-Time Nonlinear Effects in the Exciton-Polariton System
    Guevara, Cristi D.
    Shipman, Stephen P.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (02) : 579 - 597
  • [2] Exciton-polariton mediated nonlinear optics in a hybrid optomechanical system
    Munir, Akhtar
    Yasir, Kashif Ammar
    Gao, Xianlong
    CHINESE JOURNAL OF PHYSICS, 2022, 78 : 72 - 82
  • [3] Nonlinear effects in a dense two-dimensional exciton-polariton system in semiconductor microcavities
    Kulakovskii, VD
    Tartakovskii, AI
    Krizhanovskii, DN
    Gippius, NA
    Skolnick, MS
    Roberts, JS
    NANOTECHNOLOGY, 2001, 12 (04) : 475 - 479
  • [4] Dispersion effects in exciton-polariton solitons
    Stoychev, KT
    Primatarowa, MT
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (08) : L183 - L188
  • [5] Exciton-polariton laser
    Moskalenko, S. A.
    Tiginyanu, I. M.
    LOW TEMPERATURE PHYSICS, 2016, 42 (05) : 330 - 339
  • [6] Exciton-polariton Laser
    Moskalenko, S. A.
    Tiginyanu, I.
    3RD INTERNATIONAL CONFERENCE ON NANOTECHNOLOGIES AND BIOMEDICAL ENGINEERING, 2016, 55 : 196 - 200
  • [7] Microcavity exciton-polariton
    Cao, H
    COHERENT CONTROL IN ATOMS, MOLECULES, AND SEMICONDUCTORS, 1999, : 157 - 168
  • [8] Exciton-polariton condensation
    Keeling, Jonathan
    Berloff, Natalia G.
    CONTEMPORARY PHYSICS, 2011, 52 (02) : 131 - 151
  • [9] Some remarks on the ground state of the exciton and exciton-polariton system
    Littlewood, PB
    Brown, GJ
    Eastham, PR
    Szymanska, MH
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 234 (01): : 36 - 49
  • [10] Semiconductor Exciton-Polariton Lasers
    Schneider, C.
    Amthor, M.
    Kim, N. Y.
    Rahimi-Iman, A.
    Savenko, I. G.
    Shelykh, I. A.
    Kulakovskii, V. D.
    Kamp, M.
    Reitzenstein, S.
    Worschech, L.
    Yamamoto, Y.
    Forchel, A.
    Hoefling, S.
    2014 24TH IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC 2014), 2014, : 3 - 4