Quantum effects of the conformal anomaly in a 2D model of gravitational collapse

被引:0
|
作者
Emil Mottola
Mani Chandra
Gian Mario Manca
Evgeny Sorkin
机构
[1] Univ. of New Mexico,Dept. of Physics and Astronomy
[2] Rensselaer Polytechnic Institute,Dept. of Materials Science and Engineering
[3] Albert Einstein Institute,Max Planck Institute for Gravitationsphysik
[4] Albert Einstein Institute,Max Planck Institute for Gravitationsphysik
[5] Perceive Corp.,undefined
关键词
Black Holes; 2D Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
The macroscopic effects of the quantum conformal anomaly are evaluated in a simplified two-dimensional model of gravitational collapse. The effective action and stress tensor of the anomaly can be expressed in a local quadratic form by the introduction of a scalar conformalon field φ, which satisfies a linear wave equation. A wide class of non-vacuum initial state conditions is generated by different solutions of this equation. An interesting subclass of solutions corresponds to initial states that give rise to an arbitrarily large semi-classical stress tensor Tμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle {T}_{\mu}^{\nu}\right\rangle $$\end{document} on the future horizon of the black hole formed in classical collapse. These lead to modification and suppression of Hawking radiation at late times after the collapse, and potentially large backreaction effects on the horizon scale due to the conformal anomaly. The probability of non-vacuum initial conditions large enough to produce these effects is estimated from the Gaussian vacuum wave functional of φ in the Schrödinger representation and shown to be O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(1). These results indicate that quantum effects of the conformal anomaly in non-vacuum states are relevant for gravitational collapse in the effective theory of gravity in four dimensions as well.
引用
收藏
相关论文
共 50 条
  • [1] Quantum effects of the conformal anomaly in a 2D model of gravitational collapse
    Mottola, Emil
    Chandra, Mani
    Manca, Gian Mario
    Sorkin, Evgeny
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [2] A MODEL OF QUANTUM GRAVITATIONAL COLLAPSE
    GREENSITE, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (15): : 2693 - 2706
  • [3] Quantum effects in the 2D XY model
    Schindelin, C
    Fehske, H
    Büttner, H
    Ihle, D
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART I) : 403 - 404
  • [4] Fermion pairing and the scalar boson of the 2D conformal anomaly
    Daniel N. Blaschke
    Raúl Carballo-Rubio
    Emil Mottola
    Journal of High Energy Physics, 2014
  • [5] Fermion pairing and the scalar boson of the 2D conformal anomaly
    Blaschke, Daniel N.
    Carballo-Rubio, Raul
    Mottola, Emil
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12):
  • [6] Conformal anomaly for 2D and 4D dilaton coupled spinors
    van Nieuwenhuizen, P
    Nojiri, S
    Odintsov, SD
    PHYSICAL REVIEW D, 1999, 60 (08)
  • [7] A Skeletal Model for 2d Conformal AQFTs
    Benini, Marco
    Giorgetti, Luca
    Schenkel, Alexander
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (01) : 269 - 298
  • [8] 2D SUGRA - SUPERSYMMETRIC FORM OF THE EFFECTIVE ACTION LEADING TO THE CONFORMAL ANOMALY
    GIERES, F
    MCCABE, J
    PHYSICS LETTERS B, 1988, 202 (03) : 339 - 342
  • [9] Exact quantum conformal symmetry, its spontaneous breakdown, and gravitational Weyl anomaly
    Shaposhnikov, Mikhail
    Tokareva, Anna
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [10] Modified general relativity as a model for quantum gravitational collapse
    Kreienbuehl, Andreas
    Husain, Viqar
    Seahra, Sanjeev S.
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (09)