Substitution Discrete Plane Tilings with 2n-Fold Rotational Symmetry for Odd n

被引:0
|
作者
Jarkko Kari
Victor H. Lutfalla
机构
[1] University of Turku,Department of Mathematics
[2] Laboratoire d’Informatique de Paris Nord,undefined
[3] UMR CNRS 7030,undefined
[4] Institut Galilée - Université Paris 13,undefined
来源
关键词
Substitution tilings; Discrete planes; Cut-and-project tiling; -Fold symmetric tiling; Quasiperiodic tilings; Rhombus tiling; 52C20; 37B50;
D O I
暂无
中图分类号
学科分类号
摘要
We study substitution tilings that are also discrete plane tilings, that is, satisfy a relaxed version of cut-and-projection. We prove that the Sub Rosa substitution tilings with a 2n-fold rotational symmetry for odd n>5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>5$$\end{document} defined by Kari and Rissanen are not discrete planes—and therefore not cut-and-project tilings either. We then define new Planar Rosa substitution tilings with a 2n-fold rotational symmetry for any odd n, and show that these satisfy the discrete plane condition. The tilings we consider are edge-to-edge rhombus tilings. We give an explicit construction for the 10-fold case, and provide a construction method for the general case of any odd n. Our methods are to lift the tilings and substitutions to Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{{n}}$$\end{document} using the lift operator first defined by Levitov, and to study the planarity of substitution tilings in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{{n}}$$\end{document} using mainly linear algebra, properties of circulant matrices, and trigonometric sums. For the construction of the Planar Rosa substitutions we additionally use the Kenyon criterion and a result on De Bruijn multigrid dual tilings.
引用
收藏
页码:349 / 398
页数:49
相关论文
共 50 条