Further properties on the degree distance of graphs

被引:0
|
作者
Hongzhuan Wang
Liying Kang
机构
[1] Shanghai University,Department of Mathematics
[2] Huaiyin Institute of Technology,Faculty of Mathematics and Physics
来源
关键词
Degree distance; Eccentric distance sum; Tensor product; 05C90; 05C12; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the degree distance of a connected graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, defined as D′(G)=∑u∈V(G)dG(u)DG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{'} (G)=\sum _{u\in V(G)} d_{G} (u)D_{G} (u)$$\end{document}, where DG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{G} (u)$$\end{document} is the sum of distances between the vertex u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and all other vertices in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and dG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{G} (u)$$\end{document} denotes the degree of vertex u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. Our main purpose is to investigate some properties of degree distance. We first investigate degree distance of tensor productG×Km0,m1,⋯,mr-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\times K_{m_0,m_1,\cdots ,m_{r-1}}$$\end{document}, where Km0,m1,⋯,mr-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{m_0,m_1,\cdots ,m_{r-1}}$$\end{document} is the complete multipartite graph with partite sets of sizes m0,m1,⋯,mr-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0,m_1,\cdots ,m_{r-1}$$\end{document}, and we present explicit formulas for degree distance of the product graph. In addition, we give some Nordhaus–Gaddum type bounds for degree distance. Finally, we compare the degree distance and eccentric distance sum for some graph families.
引用
收藏
页码:427 / 446
页数:19
相关论文
共 50 条
  • [1] Further properties on the degree distance of graphs
    Wang, Hongzhuan
    Kang, Liying
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 427 - 446
  • [2] Further results on the reciprocal degree distance of graphs
    Shuchao Li
    Huihui Zhang
    Minjie Zhang
    [J]. Journal of Combinatorial Optimization, 2016, 31 : 648 - 668
  • [3] Further results on the reciprocal degree distance of graphs
    Li, Shuchao
    Zhang, Huihui
    Zhang, Minjie
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 648 - 668
  • [4] Reciprocal degree distance and Hamiltonian properties of graphs
    Kori, Rajkaran
    Prasad, Abhyendra
    Upadhyay, Ashish K.
    [J]. OPERATIONS RESEARCH LETTERS, 2023, 51 (06) : 623 - 627
  • [5] Properties of connected graphs having minimum degree distance
    Tomescu, Ioan
    [J]. DISCRETE MATHEMATICS, 2009, 309 (09) : 2745 - 2748
  • [6] EXTREMAL PROPERTIES OF ZAGREB COINDICES AND DEGREE DISTANCE OF GRAPHS
    Hossein-Zadeh, S.
    Hamzeh, A.
    Ashrafi, A. R.
    [J]. MISKOLC MATHEMATICAL NOTES, 2010, 11 (02) : 129 - 137
  • [7] SOME PROPERTIES ABOUT DISTANCE DEGREE REGULAR GRAPHS
    Zhou Ming-kun
    [J]. 新疆大学学报(自然科学版), 1985, (01) : 15 - 22
  • [8] SOME PROPERTIES ABOUT DISTANCE DEGREE REGULAR GRAPHS
    Zhou Ming-kun
    [J]. 新疆大学学报(自然科学版)(中英文), 1985, (01) : 15 - 22
  • [9] Products of distance degree regular and distance degree injective graphs
    Huilgol, Medha Itagi
    Rajeshwari, M.
    Ulla, S. Syed Asif
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2012, 15 (4-5): : 303 - 314
  • [10] On the reciprocal degree distance of graphs
    Hua, Hongbo
    Zhang, Shenggui
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1152 - 1163