The Functional Law of the Iterated Logarithm for the Empirical Process Based on Sample Means

被引:0
|
作者
John H. J. Einmahl
Andrew Rosalsky
机构
[1] Eindhoven University of Technology,EURANDOM and Department of Mathematics and Computing Science
[2] University of Florida,Department of Statistics
来源
关键词
empirical process based on sample means; functional law of the iterated logarithm; double array; relative compactness; central limit theorem; Berry–Esseen inequality;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a double array \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {X_{i,j} ;i \geqslant 1,j \geqslant } \right\}$$ \end{document} of i.i.d. random variables with mean μ and variance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sigma ^2 (0 < \sigma ^2 < \infty )$$ \end{document} and set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Z_{i,n} = n^{ - 1/2} \sum\nolimits_{j = 1}^n {(X_{i,j} - \mu )} /\sigma $$ \end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat \Phi _{N,n} $$ \end{document} denote the empirical distribution function of Z1, n,..., ZN, n and let Φ be the standard normal distribution function. The main result establishes a functional law of the iterated logarithm for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt N (\hat \Phi _{N,n} - \Phi )$$ \end{document}, where n=n(N)→∞ as N→∞. For the proof, some lemmas are derived which may be of independent interest. Some corollaries of the main result are also presented.
引用
收藏
页码:577 / 597
页数:20
相关论文
共 50 条