Integrable Differential Systems of Topological Type and Reconstruction by the Topological Recursion

被引:0
|
作者
Raphaël Belliard
Bertrand Eynard
Olivier Marchal
机构
[1] Université Paris Saclay,Institut de physique théorique
[2] CEA,Centre de recherches mathématiques
[3] CNRS,Université de Lyon, CNRS UMR 5208, Université Jean Monnet
[4] Université de Montréal,undefined
[5] Institut Camille Jordan,undefined
来源
Annales Henri Poincaré | 2017年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Starting from a d×d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\times d$$\end{document} rational Lax pair system of the form ħ∂xΨ=LΨ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \partial _x \Psi = L\Psi $$\end{document} and ħ∂tΨ=RΨ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \partial _t \Psi =R\Psi $$\end{document}, we prove that, under certain assumptions (genus 0 spectral curve and additional conditions on R and L), the system satisfies the “topological type property.” A consequence is that the formal ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}-WKB expansion of its determinantal correlators satisfies the topological recursion. This applies in particular to all (p, q) minimal models reductions of the KP hierarchy, or to the six Painlevé systems.
引用
收藏
页码:3193 / 3248
页数:55
相关论文
共 50 条
  • [1] Integrable Differential Systems of Topological Type and Reconstruction by the Topological Recursion
    Belliard, Raphael
    Eynard, Bertrand
    Marchal, Olivier
    [J]. ANNALES HENRI POINCARE, 2017, 18 (10): : 3193 - 3248
  • [2] Painleve equations, topological type property and reconstruction by the topological recursion
    Iwaki, K.
    Marchal, O.
    Saenz, A.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 16 - 54
  • [3] Open topological recursion relations in genus 1 and integrable systems
    Oscar Brauer Gomez
    Alexandr Buryak
    [J]. Journal of High Energy Physics, 2021
  • [4] Open topological recursion relations in genus 1 and integrable systems
    Gomez, Oscar Brauer
    Buryak, Alexandr
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [5] Local stability and topological structure of completely integrable differential systems
    Yang, Yantao
    Zhang, Xiang
    Wang, Zhiyu
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
  • [6] A topological property of integrable systems
    Paiva, JCA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) : 2507 - 2508
  • [7] WKB solutions of difference equations and reconstruction by the topological recursion
    Marchal, Olivier
    [J]. NONLINEARITY, 2018, 31 (01) : 226 - 262
  • [8] Integrable systems admitting topological solitons
    Ward, RS
    Winn, AE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (13): : L261 - L266
  • [9] Topological recursion and geometry
    Borot, Gaeetan
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (10)
  • [10] Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: The sl2 case
    Marchal, Olivier
    Orantin, Nicolas
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (06)