Mining microarray gene expression data with unsupervised possibilistic clustering and proximity graphs

被引:0
|
作者
L. B. Romdhane
H. Shili
B. Ayeb
机构
[1] Faculty of Sciences of Monastir,PRINCE Research Group, Dept. of Computer Science
来源
Applied Intelligence | 2010年 / 33卷
关键词
Gene expression microarray data; Data mining; Possibilistic clustering; Proximity graph;
D O I
暂无
中图分类号
学科分类号
摘要
Gene expression data generated by DNA microarray experiments provide a vast resource of medical diagnostic and disease understanding. Unfortunately, the large amount of data makes it hard, sometimes even impossible, to understand the correct behavior of genes. In this work, we develop a possibilistic approach for mining gene microarray data. Our model consists of two steps. In the first step, we use possibilistic clustering to partition the data into groups (or clusters). The optimal number of clusters is evaluated automatically from the data using the Information Entropy as a validity measure. In the second step, we select from each computed cluster the most representative genes and model them as a graph called a proximity graph. This set of graphs (or hyper-graph) will be used to predict the function of new and previously unknown genes. Experimental results using real-world data sets reveal a good performance and a high prediction accuracy of our model.
引用
收藏
页码:220 / 231
页数:11
相关论文
共 50 条
  • [1] Mining microarray gene expression data with unsupervised possibilistic clustering and proximity graphs
    Romdhane, L. B.
    Shili, H.
    Ayeb, B.
    [J]. APPLIED INTELLIGENCE, 2010, 33 (02) : 220 - 231
  • [2] Proximity Measures for Clustering Gene Expression Microarray Data: A Validation Methodology and a Comparative Analysis
    Jaskowiak, Pablo A.
    Campello, Ricardo J. G. B.
    Costa, Ivan G.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (04) : 845 - 857
  • [3] Clustering methods for microarray gene expression data
    Belacel, Nabil
    Wang, Qian
    Cuperlovic-Culf, Miroslava
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (04) : 507 - 531
  • [4] Data mining and visualisation of microarray gene expression data
    Alan Robinson
    Alvis Brazma
    [J]. Nature Genetics, 1999, 23 (Suppl 3) : 71 - 71
  • [5] Discriminatory Mining of Gene Expression Microarray Data
    Zuyi Wang
    Yue Wang
    Jianping Lu
    Sun-Yuan Kung
    Junying Zhang
    Richard Lee
    Jianhua Xuan
    Javed Khan
    Robert Clarke
    [J]. Journal of VLSI signal processing systems for signal, image and video technology, 2003, 35 : 255 - 272
  • [6] Discriminatory mining of gene expression microarray data
    Wang, ZY
    Wang, Y
    Lu, JP
    Kung, SY
    Zhang, JY
    Lee, R
    Xuan, JH
    Khan, JV
    [J]. JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2003, 35 (03): : 255 - 272
  • [7] Gene Screening and Clustering of Yeast Microarray Gene Expression Data
    Lee, Kyunga
    Kim, Taehoun
    Kim, Jaehee
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (06) : 1077 - 1094
  • [8] Gene Expression Data clustering using Unsupervised Methods
    Chandrasekhar, T.
    Thangavel, K.
    Elayaraja, E.
    [J]. 2011 THIRD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2011, : 146 - 150
  • [9] Unsupervised selection of informative genes in microarray gene expression data
    Liaghat, Samaneh
    Mansoori, Eghbal G.
    [J]. INTERNATIONAL JOURNAL OF APPLIED PATTERN RECOGNITION, 2016, 3 (04) : 351 - 367
  • [10] Clustering of Association Rules on Microarray Gene Expression Data
    Alagukumar, S.
    Vanitha, C. Devi Arockia
    Lawrance, R.
    [J]. ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 85 - 97