Stabilization of Infinite-Dimensional Semilinear Systems with Dissipative Drift

被引:0
|
作者
H. Bounit
H. Hammouri
机构
[1] L.A.G.E.P. Bât 308,
[2] Université Claude Bernard Lyon I,undefined
[3] UPRES-A CNRS Q 5007,undefined
[4] et ESCPE - Lyon,undefined
[5] 43,undefined
[6] Bd du 11 Novembre 1918,undefined
[7] 69622 Villeurbanne cedex,undefined
[8] France hammouri@lagep.univ-lyon1.fr ,undefined
来源
关键词
Key words. Distributed systems, Asymptotic ad-condition, Nonlinear stabilization. AMS Classification. DG/96039/AB/SM.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study feedback stabilization for distributed semilinear control systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\dot{x}(t) = Ax(t) + u(t){\cal B}(x(t))$ \end{document} . Here, A is the infinitesimal generator of a linear C0 -semigroup of contractions on a real Hilbert space H and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal B}$ \end{document} is a nonlinear operator on H into itself. A sufficient ad-condition is provided for strong feedback stabilization. The result is illustrated by means of partial differential systems.
引用
收藏
页码:225 / 242
页数:17
相关论文
共 50 条