Computing most probable worlds of action probabilistic logic programs: scalable estimation for 1030,000 worlds

被引:0
|
作者
Samir Khuller
M. Vanina Martinez
Dana Nau
Amy Sliva
Gerardo I. Simari
V. S. Subrahmanian
机构
[1] University of Maryland College Park,Department of Computer Science and University of Maryland Institute for Advanced Computer Studies (UMIACS)
关键词
Uncertainty; Probabilistic logic programs; Most probable worlds; Scalable approximations; 68T37;
D O I
暂无
中图分类号
学科分类号
摘要
The semantics of probabilistic logic programs (PLPs) is usually given through a possible worlds semantics. We propose a variant of PLPs called action probabilistic logic programs or -programs that use a two-sorted alphabet to describe the conditions under which certain real-world entities take certain actions. In such applications, worlds correspond to sets of actions these entities might take. Thus, there is a need to find the most probable world (MPW) for -programs. In contrast, past work on PLPs has primarily focused on the problem of entailment. This paper quickly presents the syntax and semantics of -programs and then shows a naive algorithm to solve the MPW problem using the linear program formulation commonly used for PLPs. As such linear programs have an exponential number of variables, we present two important new algorithms, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textsf{HOP} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textsf{SemiHOP} $\end{document} to solve the MPW problem exactly. Both these algorithms can significantly reduce the number of variables in the linear programs. Subsequently, we present a “binary” algorithm that applies a binary search style heuristic in conjunction with the Naive, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textsf{HOP} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textsf{SemiHOP} $\end{document} algorithms to quickly find worlds that may not be “most probable.” We experimentally evaluate these algorithms both for accuracy (how much worse is the solution found by these heuristics in comparison to the exact solution) and for scalability (how long does it take to compute). We show that the results of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textsf{SemiHOP} $\end{document} are very accurate and also very fast: more than 1030,000 worlds can be handled in a few minutes. Subsequently, we develop parallel versions of these algorithms and show that they provide further speedups.
引用
收藏
页码:295 / 331
页数:36
相关论文
共 7 条
  • [1] Computing most probable worlds of action probabilistic logic programs:: scalable estimation for 1030,000 worlds
    Khuller, Samir
    Martinez, M. Vanina
    Nau, Dana
    Sliva, Amy
    Simari, Gerardo I.
    Subrahmanian, V. S.
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2007, 51 (2-4) : 295 - 331
  • [2] Finding most probable worlds of probabilistic logic programs
    Khuller, Samir
    Martinez, Vanina
    Nan, Dana
    Simari, Gerardo
    Sliva, Amy
    Subrahmanian, V. S.
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, PROCEEDINGS, 2007, 4772 : 45 - +
  • [3] Possible worlds semantics for Probabilistic Logic Programs
    Dekhtyar, A
    Dekhtyar, MI
    [J]. LOGIC PROGRAMMING, PROCEEDINGS, 2004, 3132 : 137 - 148
  • [4] The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions
    Shterionov, Dimitar
    Renkens, Joris
    Vlasselaer, Jonas
    Kimmig, Angelika
    Meert, Wannes
    Janssens, Gerda
    [J]. INDUCTIVE LOGIC PROGRAMMING, ILP 2014, 2015, 9046 : 139 - 153
  • [5] Focused most probable world computations in probabilistic logic programs
    Gerardo I. Simari
    Maria Vanina Martinez
    Amy Sliva
    V. S. Subrahmanian
    [J]. Annals of Mathematics and Artificial Intelligence, 2012, 64 : 113 - 143
  • [6] Focused most probable world computations in probabilistic logic programs
    Simari, Gerardo I.
    Martinez, Maria Vanina
    Sliva, Amy
    Subrahmanian, V. S.
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2012, 64 (2-3) : 113 - 143
  • [7] Scaling Most Probable World Computations in Probabilistic Logic Programs
    Simari, Gerardo I.
    Martinez, Maria Vanina
    Sliva, Amy
    Subrahmanian, V. S.
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2008, 2008, 5291 : 372 - 385