Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization

被引:5
|
作者
Wei Bian
Xiaojun Chen
Yinyu Ye
机构
[1] Harbin Institute of Technology,Department of Mathematics
[2] The Hong Kong Polytechnic University,Department of Applied Mathematics
[3] Stanford University,Department of Management Science and Engineering
来源
Mathematical Programming | 2015年 / 149卷
关键词
Constrained non-Lipschitz optimization; Complexity analysis; Interior point method; First order algorithm; Second order algorithm; 90C30; 90C26; 65K05; 49M37;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a first order interior point algorithm for a class of non-Lipschitz and nonconvex minimization problems with box constraints, which arise from applications in variable selection and regularized optimization. The objective functions of these problems are continuously differentiable typically at interior points of the feasible set. Our first order algorithm is easy to implement and the objective function value is reduced monotonically along the iteration points. We show that the worst-case iteration complexity for finding an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} scaled first order stationary point is O(ϵ-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon ^{-2})$$\end{document}. Furthermore, we develop a second order interior point algorithm using the Hessian matrix, and solve a quadratic program with a ball constraint at each iteration. Although the second order interior point algorithm costs more computational time than that of the first order algorithm in each iteration, its worst-case iteration complexity for finding an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} scaled second order stationary point is reduced to O(ϵ-3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon ^{-3/2})$$\end{document}. Note that an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} scaled second order stationary point must also be an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} scaled first order stationary point.
引用
收藏
页码:301 / 327
页数:26
相关论文
共 50 条
  • [1] Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization
    Bian, Wei
    Chen, Xiaojun
    Ye, Yinyu
    [J]. MATHEMATICAL PROGRAMMING, 2015, 149 (1-2) : 301 - 327
  • [2] AN AUGMENTED LAGRANGIAN METHOD FOR NON-LIPSCHITZ NONCONVEX PROGRAMMING
    Chen, Xiaojun
    Guo, Lei
    Lu, Zhaosong
    Ye, Jane J.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 168 - 193
  • [3] An Analysis of Robustness of Non-Lipschitz Networks
    Balcan, Maria-Florina
    Avrim, Avrim Blum
    Dravyans, Dravyansh Sharma
    Zhang, Hongyang
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [4] Global optimality condition and fixed point continuation algorithm for non-Lipschitz a lp regularized matrix minimization
    Peng, Dingtao
    Xiu, Naihua
    Yu, Jian
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1139 - 1152
  • [5] Global optimality condition and fixed point continuation algorithm for non-Lipschitz ?p regularized matrix minimization
    Dingtao Peng
    Naihua Xiu
    Jian Yu
    [J]. Science China Mathematics, 2018, 61 (06) : 1139 - 1152
  • [6] Global optimality condition and fixed point continuation algorithm for non-Lipschitz ℓp regularized matrix minimization
    Dingtao Peng
    Naihua Xiu
    Jian Yu
    [J]. Science China Mathematics, 2018, 61 : 1139 - 1152
  • [7] A SMOOTHING ACTIVE SET METHOD FOR LINEARLY CONSTRAINED NON-LIPSCHITZ NONCONVEX OPTIMIZATION
    Zhang, Chao
    Chen, Xiaojun
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 1 - 30
  • [8] An Interior Stochastic Gradient Method for a Class of Non-Lipschitz Optimization Problems
    Cheng, Wanyou
    Wang, Xiao
    Chen, Xiaojun
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
  • [9] An Interior Stochastic Gradient Method for a Class of Non-Lipschitz Optimization Problems
    Wanyou Cheng
    Xiao Wang
    Xiaojun Chen
    [J]. Journal of Scientific Computing, 2022, 92
  • [10] On some interior-point algorithms for nonconvex quadratic optimization
    Paul Tseng
    Yinyu Ye
    [J]. Mathematical Programming, 2002, 93 : 217 - 225