Isoperimetric Inequalities for Non-Local Dirichlet Forms

被引:0
|
作者
Feng-Yu Wang
Jian Wang
机构
[1] Tianjin University,Center of Applied Mathematics
[2] Swansea University,Department of Mathematics
[3] Fujian Normal University,College of Mathematics and Informatics & Fujian Key Laboratory of Mathematical Analysis and Applications (FJKLMAA)
来源
Potential Analysis | 2020年 / 53卷
关键词
Isoperimetric inequality; Non-local Dirichlet form; Super Poincaré inequality; Orlicz norm; 47G20; 47D62;
D O I
暂无
中图分类号
学科分类号
摘要
Let (E,𝒠F,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(E,{\mathscr{E}} F,\mu )$\end{document} be a σ-finite measure space. For a non-negative symmetric measurable function J(x,y) on E × E, consider the quadratic form
引用
收藏
页码:1225 / 1253
页数:28
相关论文
共 50 条
  • [1] Isoperimetric Inequalities for Non-Local Dirichlet Forms
    Wang, Feng-Yu
    Wang, Jian
    [J]. POTENTIAL ANALYSIS, 2020, 53 (04) : 1225 - 1253
  • [2] Weighted Poincar, Inequalities for Non-local Dirichlet Forms
    Chen, Xin
    Wang, Jian
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (02) : 452 - 489
  • [3] Weighted Poincaré Inequalities for Non-local Dirichlet Forms
    Xin Chen
    Jian Wang
    [J]. Journal of Theoretical Probability, 2017, 30 : 452 - 489
  • [4] Elliptic Harnack inequalities for symmetric non-local Dirichlet forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 : 1 - 42
  • [5] A SIMPLE APPROACH TO FUNCTIONAL INEQUALITIES FOR NON-LOCAL DIRICHLET FORMS
    Wang, Jian
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 503 - 513
  • [6] Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (11) : 3747 - 3803
  • [7] Nash-type inequalities and heat kernels for non-local Dirichlet forms
    Hu, Jiaxin
    Kumagai, Takashi
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2006, 60 (02) : 245 - 265
  • [8] LOCAL AND NON-LOCAL DIRICHLET FORMS ON THE SIERPITSKI CARPET
    Grigor'yan, Alexander
    Yang, Meng
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) : 3985 - 4030
  • [9] Heat kernel estimates and Harnack inequalities for some Dirichlet forms with non-local part
    Foondun, Mohammud
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 314 - 340
  • [10] Sobolev and isoperimetric inequalities for dirichlet forms on homogeneous spaces
    Biroli, Marco
    Mosco, Umberio
    [J]. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 6 (01):