A Parametric Study for the First-Order Signed Integer-Valued Autoregressive Process

被引:0
|
作者
Christophe Chesneau
Maher Kachour
机构
[1] Université de Caen Basse-Normandie,Laboratoire de Mathématiques Nicolas Oresme
[2] École supérienre de commerce IDRAC,undefined
关键词
Integer-valued time series; INAR models; SINAR models; Rademacher (; )-ℕ class; Skellam distribution; 62M10; 62M20;
D O I
10.1080/15598608.2012.719816
中图分类号
学科分类号
摘要
In recent years, many attempts have been made to find accurate models for integer-valued times series. The SINAR (for Signed INteger-valued AutoRegressive) process is one of the most interesting. Indeed, the SINAR model allows negative values both for the series and its autocorrelation function. In this paper, we focus on the simplest SINAR(1) model under some parametric assumptions. Explicitly, we give an implicit form of the stationary distribution for a known innovation. Simulation experiments and analysis of real data sets are carried out to attest to the model’s performance.
引用
收藏
页码:760 / 782
页数:22
相关论文
共 50 条
  • [1] A Parametric Study for the First-Order Signed Integer-Valued Autoregressive Process
    Chesneau, Christophe
    Kachour, Maher
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2012, 6 (04) : 760 - 782
  • [2] A bivariate first-order signed integer-valued autoregressive process
    Bulla, Jan
    Chesneau, Christophe
    Kachour, Maher
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (13) : 6590 - 6604
  • [3] On first-order integer-valued autoregressive process with Katz family innovations
    Kim, Hanwool
    Lee, Sangyeol
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 546 - 562
  • [4] First-order rounded integer-valued autoregressive (RINAR(1)) process
    Kachour, M.
    Yao, J. F.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (04) : 417 - 448
  • [5] First-order integer-valued autoregressive process with Markov-switching coefficients
    Lu, Feilong
    Wang, Dehui
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (13) : 4313 - 4329
  • [6] A new geometric first-order integer-valued autoregressive (NGINAR(1)) process
    Ristic, Miroslav M.
    Bakouch, Hassan S.
    Nastic, Aleksandar S.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2218 - 2226
  • [7] A new mixed first-order integer-valued autoregressive process with Poisson innovations
    Orozco, Daniel L. R.
    Sales, Lucas O. F.
    Fernandez, Luz M. Z.
    Pinho, Andre L. S.
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2021, 105 (04) : 559 - 580
  • [8] A new mixed first-order integer-valued autoregressive process with Poisson innovations
    Daniel L. R. Orozco
    Lucas O. F. Sales
    Luz M. Z. Fernández
    André L. S. Pinho
    [J]. AStA Advances in Statistical Analysis, 2021, 105 : 559 - 580
  • [9] First-order random coefficient integer-valued autoregressive processes
    Zheng, Haitao
    Basawa, Ishwar V.
    Datta, Somnath
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (01) : 212 - 229
  • [10] Empirical Likelihood for a First-Order Generalized Random Coefficient Integer-Valued Autoregressive Process
    CHENG Jianhua
    WANG Xu
    WANG Dehui
    [J]. Journal of Systems Science & Complexity, 2023, 36 (02) : 843 - 865