Penalized maximum likelihood estimator for mixture of von Mises–Fisher distributions

被引:0
|
作者
Tin Lok James Ng
机构
[1] Trinity College Dublin,School of Computer Science and Statistics
来源
Metrika | 2023年 / 86卷
关键词
Mixture of von Mises–Fisher distributions; Penalized maximum likelihood estimation; Strong consistency;
D O I
暂无
中图分类号
学科分类号
摘要
The von Mises–Fisher distribution is one of the most widely used probability distributions to describe directional data. Finite mixtures of von Mises–Fisher distributions have found numerous applications. However, the likelihood function for the finite mixture of von Mises–Fisher distributions is unbounded and consequently the maximum likelihood estimation is not well defined. To address the problem of likelihood degeneracy, we consider a penalized maximum likelihood approach whereby a penalty function is incorporated. We prove strong consistency of the resulting estimator. An Expectation–Maximization algorithm for the penalized likelihood function is developed and experiments are performed to examine its performance.
引用
收藏
页码:181 / 203
页数:22
相关论文
共 50 条
  • [1] Penalized maximum likelihood estimator for mixture of von Mises-Fisher distributions
    Ng, Tin Lok James
    [J]. METRIKA, 2023, 86 (02) : 181 - 203
  • [2] On maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions
    Kurt Hornik
    Bettina Grün
    [J]. Computational Statistics, 2014, 29 : 945 - 957
  • [3] On maximum likelihood estimation of the concentration parameter of von Mises-Fisher distributions
    Hornik, Kurt
    Gruen, Bettina
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (05) : 945 - 957
  • [4] MAXIMUM LIKELIHOOD ESTIMATORS FOR THE MATRIX VON MISES-FISHER AND BINGHAM DISTRIBUTIONS
    JUPP, PE
    MARDIA, KV
    [J]. ANNALS OF STATISTICS, 1979, 7 (03): : 599 - 606
  • [5] Likelihood ratio tests for a mixture of two von Mises distributions
    Grimshaw, SD
    Whiting, DG
    Morris, TH
    [J]. BIOMETRICS, 2001, 57 (01) : 260 - 265
  • [6] Penalized maximum likelihood estimation for univariate normal mixture distributions
    Ridolfi, A
    Idier, J
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 229 - 237
  • [7] Modified likelihood ratio test for homogeneity in a mixture of von Mises distributions
    Fu, Yuejiao
    Chen, Jiahua
    Li, Pengfei
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (03) : 667 - 681
  • [8] Line spectral frequencies modeling by a mixture of von Mises-Fisher distributions
    Ma, Zhanyu
    Taghia, Jalil
    Kleijn, W. Bastiaan
    Leijon, Arne
    Guo, Jun
    [J]. SIGNAL PROCESSING, 2015, 114 : 219 - 224
  • [9] Penalized maximum likelihood estimator for normal mixtures
    Ciuperca, G
    Ridolfi, A
    Idier, J
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (01) : 45 - 59
  • [10] Parameter estimation for von Mises–Fisher distributions
    Akihiro Tanabe
    Kenji Fukumizu
    Shigeyuki Oba
    Takashi Takenouchi
    Shin Ishii
    [J]. Computational Statistics, 2007, 22 : 145 - 157