Chi-square processes for gene mapping in a population with family structure

被引:0
|
作者
Charles-Elie Rabier
Jean-Marc Azaïs
Jean-Michel Elsen
Céline Delmas
机构
[1] MIAT,Institut de Mathématiques de Toulouse, CNRS UMR 5219
[2] Université de Toulouse,undefined
[3] INRA,undefined
[4] Université Paul Sabatier,undefined
[5] GenPhyse,undefined
[6] Université de Toulouse,undefined
[7] INRA,undefined
来源
Statistical Papers | 2019年 / 60卷
关键词
Chi-square process; Gaussian process; Likelihood ratio test; Mixture models; QTL detection; MCQMC; 62M86; 65C05; 62P10;
D O I
暂无
中图分类号
学科分类号
摘要
Detecting a quantitative trait locus, so-called QTL (a gene influencing a quantitative trait which is able to be measured), on a given chromosome is a major problem in Genetics. We study a population structured in families and we assume that the QTL location is the same for all the families. We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL on the interval [0, T] representing a chromosome. We give the asymptotic distribution of the LRT process under the null hypothesis that there is no QTL in any families and under local alternative with a QTL at t⋆∈[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^{\star }\in [0, T]$$\end{document} in at least one family. We show that the LRT is asymptotically the supremum of the sum of the square of independent interpolated Gaussian processes. The number of processes corresponds to the number of families. We propose several new methods to compute critical values for QTL detection. Since all these methods rely on asymptotic results, the validity of the asymptotic assumption is checked using simulated data. Finally we show how to optimize the QTL detecting process.
引用
收藏
页码:239 / 271
页数:32
相关论文
共 50 条
  • [1] Chi-square processes for gene mapping in a population with family structure
    Rabier, Charles-Elie
    Azais, Jean-Marc
    Elsen, Jean-Michel
    Delmas, Celine
    [J]. STATISTICAL PAPERS, 2019, 60 (01) : 239 - 271
  • [2] The Supremum of Chi-Square Processes
    Rabier, Charles-Elie
    Genz, Alan
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (03) : 715 - 729
  • [3] The Supremum of Chi-Square Processes
    Charles-Elie Rabier
    Alan Genz
    [J]. Methodology and Computing in Applied Probability, 2014, 16 : 715 - 729
  • [4] EXTREMES OF CHI-SQUARE PROCESSES WITH TREND
    Liu, Peng
    Ji, Lanpeng
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (01): : 1 - 20
  • [5] FAMILY OF TRANSFORMED CHI-SQUARE DISTRIBUTIONS
    RAHMAN, MS
    GUPTA, RP
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1993, 22 (01) : 135 - 146
  • [6] MARKOVIAN CHI-SQUARE AND GAMMA PROCESSES
    ADKE, SR
    BALAKRISHNA, N
    [J]. STATISTICS & PROBABILITY LETTERS, 1992, 15 (05) : 349 - 356
  • [7] On the family of multivariate chi-square copulas
    Quessy, Jean-Francois
    Rivest, Louis-Paul
    Toupin, Marie-Helene
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 152 : 40 - 60
  • [8] Local and uniform moduli of continuity of chi-square processes
    Marcus, Michael B.
    Rosen, Jay
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27 : 1 - 10
  • [9] ESTIMATION OF SYMMETRIC CHI-SQUARE DIVERGENCE FOR POINT PROCESSES
    Park, Il
    Seth, Sohan
    Rao, Murali
    Principe, Jose C.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2016 - 2019
  • [10] Extremes of locally stationary chi-square processes with trend
    Liu, Peng
    Ji, Lanpeng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (02) : 497 - 525