A discriminative learning approach to differential expression analysis for single-cell RNA-seq

被引:0
|
作者
Vasilis Ntranos
Lynn Yi
Páll Melsted
Lior Pachter
机构
[1] UC Berkeley,Department of Electrical Engineering & Computer Science
[2] Stanford University,Department of Electrical Engineering
[3] UCLA,UCLA–Caltech Medical Science Training Program
[4] California Institute of Technology,Division of Biology and Biological Engineering
[5] University of Iceland,Faculty of Industrial Engineering, Mechanical Engineering and Computer Science
[6] California Institute of Technology,Department of Computing and Mathematical Sciences
来源
Nature Methods | 2019年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-cell RNA-seq makes it possible to characterize the transcriptomes of cell types across different conditions and to identify their transcriptional signatures via differential analysis. Our method detects changes in transcript dynamics and in overall gene abundance in large numbers of cells to determine differential expression. When applied to transcript compatibility counts obtained via pseudoalignment, our approach provides a quantification-free analysis of 3′ single-cell RNA-seq that can identify previously undetectable marker genes.
引用
收藏
页码:163 / 166
页数:3
相关论文
共 50 条
  • [1] A discriminative learning approach to differential expression analysis for single-cell RNA-seq
    Ntranos, Vasilis
    Yi, Lynn
    Melsted, Pall
    Pachter, Lior
    [J]. NATURE METHODS, 2019, 16 (02) : 163 - +
  • [2] SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data
    Das, Samarendra
    Rai, Shesh N.
    [J]. GENOMICS, 2021, 113 (03) : 1308 - 1324
  • [3] IDEAS: individual level differential expression analysis for single-cell RNA-seq data
    Zhang, Mengqi
    Liu, Si
    Miao, Zhen
    Han, Fang
    Gottardo, Raphael
    Sun, Wei
    [J]. GENOME BIOLOGY, 2022, 23 (01)
  • [4] IDEAS: individual level differential expression analysis for single-cell RNA-seq data
    Mengqi Zhang
    Si Liu
    Zhen Miao
    Fang Han
    Raphael Gottardo
    Wei Sun
    [J]. Genome Biology, 23
  • [5] An active learning approach for clustering single-cell RNA-seq data
    Lin, Xiang
    Liu, Haoran
    Wei, Zhi
    Roy, Senjuti Basu
    Gao, Nan
    [J]. LABORATORY INVESTIGATION, 2022, 102 (03) : 227 - 235
  • [6] ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data
    Zhang, Wenfei
    Wei, Ying
    Zhang, Donghui
    Xu, Ethan Y.
    [J]. BIOINFORMATICS, 2020, 36 (10) : 3124 - 3130
  • [7] Differential expression of single-cell RNA-seq data using Tweedie models
    Mallick, Himel
    Chatterjee, Suvo
    Chowdhury, Shrabanti
    Chatterjee, Saptarshi
    Rahnavard, Ali
    Hicks, Stephanie C.
    [J]. STATISTICS IN MEDICINE, 2022, 41 (18) : 3492 - 3510
  • [8] A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    Keegan D. Korthauer
    Li-Fang Chu
    Michael A. Newton
    Yuan Li
    James Thomson
    Ron Stewart
    Christina Kendziorski
    [J]. Genome Biology, 17
  • [9] A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    Korthauer, Keegan D.
    Chu, Li-Fang
    Newton, Michael A.
    Li, Yuan
    Thomson, James
    Stewart, Ron
    Kendziorski, Christina
    [J]. GENOME BIOLOGY, 2016, 17
  • [10] Nuclear oligo hashing improves differential analysis of single-cell RNA-seq
    Hyeon-Jin Kim
    Greg Booth
    Lauren Saunders
    Sanjay Srivatsan
    José L. McFaline-Figueroa
    Cole Trapnell
    [J]. Nature Communications, 13