Divide-and-Conquer Algorithms for Partitioning Hypergraphs and Submodular Systems

被引:0
|
作者
Kazumasa Okumoto
Takuro Fukunaga
Hiroshi Nagamochi
机构
[1] University of Tokyo,Graduate School of Economics
[2] Kyoto University,Graduate School of Informatics
来源
Algorithmica | 2012年 / 62卷
关键词
Divide-and-conquer algorithm; Hypergraph; Multicut; Submodular function;
D O I
暂无
中图分类号
学科分类号
摘要
The submodular system k-partition problem is a problem of partitioning a given finite set V into k non-empty subsets V1,V2,…,Vk so that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i=1}^{k}f(V_{i})$\end{document} is minimized where f is a non-negative submodular function on V. In this paper, we design an approximation algorithm for the problem with fixed k. We also analyze the approximation factor of our algorithm for the hypergraph k-cut problem, which is a problem contained by the submodular system k-partition problem.
引用
收藏
页码:787 / 806
页数:19
相关论文
共 50 条